/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 162 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 26 ms] (4) QTRS (5) DependencyPairsProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) AND (9) QDP (10) UsableRulesProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) MRRProof [EQUIVALENT, 0 ms] (23) QDP (24) PisEmptyProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) MRRProof [EQUIVALENT, 0 ms] (30) QDP (31) PisEmptyProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QDPSizeChangeProof [EQUIVALENT, 0 ms] (37) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log(x) -> -(log'(x), 1(#)) log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(#) = 0 POL(+(x_1, x_2)) = x_1 + x_2 POL(-(x_1, x_2)) = x_1 + x_2 POL(0(x_1)) = 2*x_1 POL(1(x_1)) = 2*x_1 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + 2*x_2 POL(if(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(log(x_1)) = 2 + 2*x_1 POL(log'(x_1)) = 2*x_1 POL(not(x_1)) = x_1 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: log(x) -> -(log'(x), 1(#)) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(#) -> # log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(#) = 0 POL(+(x_1, x_2)) = x_1 + x_2 POL(-(x_1, x_2)) = x_1 + x_2 POL(0(x_1)) = 2*x_1 POL(1(x_1)) = 2*x_1 POL(false) = 0 POL(ge(x_1, x_2)) = x_1 + x_2 POL(if(x_1, x_2, x_3)) = 2*x_1 + x_2 + x_3 POL(log'(x_1)) = 1 + 2*x_1 POL(not(x_1)) = x_1 POL(true) = 0 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: log'(#) -> # ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. ---------------------------------------- (5) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 0(y)) -> 0^1(+(x, y)) +^1(0(x), 0(y)) -> +^1(x, y) +^1(0(x), 1(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> 0^1(+(+(x, y), 1(#))) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) +^1(+(x, y), z) -> +^1(x, +(y, z)) +^1(+(x, y), z) -> +^1(y, z) -^1(0(x), 0(y)) -> 0^1(-(x, y)) -^1(0(x), 0(y)) -> -^1(x, y) -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> 0^1(-(x, y)) -^1(1(x), 1(y)) -> -^1(x, y) GE(0(x), 0(y)) -> GE(x, y) GE(0(x), 1(y)) -> NOT(ge(y, x)) GE(0(x), 1(y)) -> GE(y, x) GE(1(x), 0(y)) -> GE(x, y) GE(1(x), 1(y)) -> GE(x, y) GE(#, 0(x)) -> GE(#, x) LOG'(1(x)) -> +^1(log'(x), 1(#)) LOG'(1(x)) -> LOG'(x) LOG'(0(x)) -> IF(ge(x, 1(#)), +(log'(x), 1(#)), #) LOG'(0(x)) -> GE(x, 1(#)) LOG'(0(x)) -> +^1(log'(x), 1(#)) LOG'(0(x)) -> LOG'(x) The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 9 less nodes. ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GE(#, 0(x)) -> GE(#, x) The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: GE(#, 0(x)) -> GE(#, x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(#, 0(x)) -> GE(#, x) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: GE(0(x), 1(y)) -> GE(y, x) GE(0(x), 0(y)) -> GE(x, y) GE(1(x), 0(y)) -> GE(x, y) GE(1(x), 1(y)) -> GE(x, y) The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: GE(0(x), 1(y)) -> GE(y, x) GE(0(x), 0(y)) -> GE(x, y) GE(1(x), 0(y)) -> GE(x, y) GE(1(x), 1(y)) -> GE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(0(x), 1(y)) -> GE(y, x) The graph contains the following edges 2 > 1, 1 > 2 *GE(0(x), 0(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 *GE(1(x), 0(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 *GE(1(x), 1(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(0(x), 0(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> -^1(x, y) The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(0(x), 0(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> -^1(x, y) The TRS R consists of the following rules: -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) 0(#) -> # Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(0(x), 0(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> -^1(x, y) Strictly oriented rules of the TRS R: -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) 0(#) -> # Used ordering: Knuth-Bendix order [KBO] with precedence:-_2 > -^1_2 > 0_1 > 1_1 > # and weight map: #=2 0_1=5 1_1=3 -_2=0 -^1_2=0 The variable weight is 1 ---------------------------------------- (23) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) +^1(+(x, y), z) -> +^1(x, +(y, z)) +^1(+(x, y), z) -> +^1(y, z) The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) +^1(+(x, y), z) -> +^1(x, +(y, z)) +^1(+(x, y), z) -> +^1(y, z) The TRS R consists of the following rules: +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) 0(#) -> # Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) +^1(+(x, y), z) -> +^1(x, +(y, z)) +^1(+(x, y), z) -> +^1(y, z) Strictly oriented rules of the TRS R: +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) 0(#) -> # Used ordering: Knuth-Bendix order [KBO] with precedence:# > +_2 > 1_1 > 0_1 > +^1_2 and weight map: #=2 0_1=1 1_1=3 +_2=0 +^1_2=0 The variable weight is 1 ---------------------------------------- (30) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: LOG'(0(x)) -> LOG'(x) LOG'(1(x)) -> LOG'(x) The TRS R consists of the following rules: 0(#) -> # +(#, x) -> x +(x, #) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(+(x, y), z) -> +(x, +(y, z)) -(#, x) -> # -(x, #) -> x -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(true) -> false not(false) -> true if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 0(x)) -> ge(#, x) ge(#, 1(x)) -> false log'(1(x)) -> +(log'(x), 1(#)) log'(0(x)) -> if(ge(x, 1(#)), +(log'(x), 1(#)), #) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: LOG'(0(x)) -> LOG'(x) LOG'(1(x)) -> LOG'(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LOG'(0(x)) -> LOG'(x) The graph contains the following edges 1 > 1 *LOG'(1(x)) -> LOG'(x) The graph contains the following edges 1 > 1 ---------------------------------------- (37) YES