/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO ** BEGIN proof argument ** The following rule was generated while unfolding the analyzed TRS: [iteration = 5] ifappend(cons(_0,_1),_2,false) -> ifappend(cons(_0,_1),_2,false) Let l be the left-hand side and r be the right-hand side of this rule. Let p = epsilon, theta1 = {} and theta2 = {}. We have r|p = ifappend(cons(_0,_1),_2,false) and theta2(theta1(l)) = theta1(r|p). Hence, the term theta1(l) = ifappend(cons(_0,_1),_2,false) loops w.r.t. the analyzed TRS. ** END proof argument ** ** BEGIN proof description ** ## Searching for a generalized rewrite rule (a rule whose right-hand side contains a variable that does not occur in the left-hand side)... No generalized rewrite rule found! ## Applying the DP framework... ## 1 initial DP problem to solve. ## First, we try to decompose this problem into smaller problems. ## Round 1 [1 DP problem]: ## DP problem: Dependency pairs = [append^#(_0,_1) -> ifappend^#(_0,_1,is_empty(_0)), ifappend^#(_0,_1,false) -> append^#(tl(_0),_1)] TRS = {is_empty(nil) -> true, is_empty(cons(_0,_1)) -> false, hd(cons(_0,_1)) -> _0, tl(cons(_0,_1)) -> cons(_0,_1), append(_0,_1) -> ifappend(_0,_1,is_empty(_0)), ifappend(_0,_1,true) -> _1, ifappend(_0,_1,false) -> cons(hd(_0),append(tl(_0),_1))} ## Trying with homeomorphic embeddings... Failed! ## Trying with polynomial interpretations... This DP problem is too complex! Aborting! ## Trying with lexicographic path orders... Failed! ## Trying with Knuth-Bendix orders... Failed! Don't know whether this DP problem is finite. ## A DP problem could not be proved finite. ## Now, we try to prove that this problem is infinite. ## Trying to find a loop (forward=true, backward=false, max=-1) # max_depth=3, unfold_variables=false: # Iteration 0: no loop found, 2 unfolded rules generated. # Iteration 1: no loop found, 3 unfolded rules generated. # Iteration 2: no loop found, 7 unfolded rules generated. # Iteration 3: no loop found, 1 unfolded rule generated. # Iteration 4: no loop found, 2 unfolded rules generated. # Iteration 5: success, found a loop, 1 unfolded rule generated. Here is the successful unfolding. Let IR be the TRS under analysis. L0 = ifappend^#(_0,_1,false) -> append^#(tl(_0),_1) [trans] is in U_IR^0. D = append^#(_0,_1) -> ifappend^#(_0,_1,is_empty(_0)) is a dependency pair of IR. We build a composed triple from L0 and D. ==> L1 = ifappend^#(_0,_1,false) -> ifappend^#(tl(_0),_1,is_empty(tl(_0))) [trans] is in U_IR^1. We build a unit triple from L1. ==> L2 = ifappend^#(_0,_1,false) -> ifappend^#(tl(_0),_1,is_empty(tl(_0))) [unit] is in U_IR^2. Let p2 = [2, 0]. We unfold the rule of L2 forwards at position p2 with the rule tl(cons(_0,_1)) -> cons(_0,_1). ==> L3 = ifappend^#(cons(_0,_1),_2,false) -> ifappend^#(tl(cons(_0,_1)),_2,is_empty(cons(_0,_1))) [unit] is in U_IR^3. Let p3 = [0]. We unfold the rule of L3 forwards at position p3 with the rule tl(cons(_0,_1)) -> cons(_0,_1). ==> L4 = ifappend^#(cons(_0,_1),_2,false) -> ifappend^#(cons(_0,_1),_2,is_empty(cons(_0,_1))) [unit] is in U_IR^4. Let p4 = [2]. We unfold the rule of L4 forwards at position p4 with the rule is_empty(cons(_0,_1)) -> false. ==> L5 = ifappend^#(cons(_0,_1),_2,false) -> ifappend^#(cons(_0,_1),_2,false) [unit] is in U_IR^5. This DP problem is infinite. Proof run on Linux version 3.10.0-1160.25.1.el7.x86_64 for amd64 using Java version 1.8.0_292 ** END proof description ** Total number of generated unfolded rules = 53