/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { b ↦ 0, c ↦ 1, d ↦ 2, g ↦ 3, f ↦ 4, a ↦ 5 }, it remains to prove termination of the 8-rule system { 0 0 ⟶ 1 2 , 1 1 ⟶ 2 2 2 , 1 ⟶ 3 , 2 2 ⟶ 1 4 , 2 2 2 ⟶ 3 1 , 4 ⟶ 5 3 , 3 ⟶ 2 5 0 , 3 3 ⟶ 0 1 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 1 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 8-rule system { 0 0 ⟶ 1 2 , 2 2 ⟶ 1 1 1 , 2 ⟶ 3 , 1 1 ⟶ 4 2 , 1 1 1 ⟶ 2 3 , 4 ⟶ 3 5 , 3 ⟶ 0 5 1 , 3 3 ⟶ 2 0 } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (1,2) ↦ 2, (2,0) ↦ 3, (2,1) ↦ 4, (0,2) ↦ 5, (2,2) ↦ 6, (0,3) ↦ 7, (2,3) ↦ 8, (0,4) ↦ 9, (2,4) ↦ 10, (0,5) ↦ 11, (2,5) ↦ 12, (0,7) ↦ 13, (2,7) ↦ 14, (1,0) ↦ 15, (1,1) ↦ 16, (3,0) ↦ 17, (3,1) ↦ 18, (4,0) ↦ 19, (4,1) ↦ 20, (5,0) ↦ 21, (5,1) ↦ 22, (6,0) ↦ 23, (6,1) ↦ 24, (1,3) ↦ 25, (1,4) ↦ 26, (1,5) ↦ 27, (1,7) ↦ 28, (3,2) ↦ 29, (4,2) ↦ 30, (5,2) ↦ 31, (6,2) ↦ 32, (3,3) ↦ 33, (3,4) ↦ 34, (3,5) ↦ 35, (3,7) ↦ 36, (4,3) ↦ 37, (5,3) ↦ 38, (6,3) ↦ 39, (4,4) ↦ 40, (5,4) ↦ 41, (6,4) ↦ 42 }, it remains to prove termination of the 378-rule system { 0 0 0 ⟶ 1 2 3 , 0 0 1 ⟶ 1 2 4 , 0 0 5 ⟶ 1 2 6 , 0 0 7 ⟶ 1 2 8 , 0 0 9 ⟶ 1 2 10 , 0 0 11 ⟶ 1 2 12 , 0 0 13 ⟶ 1 2 14 , 15 0 0 ⟶ 16 2 3 , 15 0 1 ⟶ 16 2 4 , 15 0 5 ⟶ 16 2 6 , 15 0 7 ⟶ 16 2 8 , 15 0 9 ⟶ 16 2 10 , 15 0 11 ⟶ 16 2 12 , 15 0 13 ⟶ 16 2 14 , 3 0 0 ⟶ 4 2 3 , 3 0 1 ⟶ 4 2 4 , 3 0 5 ⟶ 4 2 6 , 3 0 7 ⟶ 4 2 8 , 3 0 9 ⟶ 4 2 10 , 3 0 11 ⟶ 4 2 12 , 3 0 13 ⟶ 4 2 14 , 17 0 0 ⟶ 18 2 3 , 17 0 1 ⟶ 18 2 4 , 17 0 5 ⟶ 18 2 6 , 17 0 7 ⟶ 18 2 8 , 17 0 9 ⟶ 18 2 10 , 17 0 11 ⟶ 18 2 12 , 17 0 13 ⟶ 18 2 14 , 19 0 0 ⟶ 20 2 3 , 19 0 1 ⟶ 20 2 4 , 19 0 5 ⟶ 20 2 6 , 19 0 7 ⟶ 20 2 8 , 19 0 9 ⟶ 20 2 10 , 19 0 11 ⟶ 20 2 12 , 19 0 13 ⟶ 20 2 14 , 21 0 0 ⟶ 22 2 3 , 21 0 1 ⟶ 22 2 4 , 21 0 5 ⟶ 22 2 6 , 21 0 7 ⟶ 22 2 8 , 21 0 9 ⟶ 22 2 10 , 21 0 11 ⟶ 22 2 12 , 21 0 13 ⟶ 22 2 14 , 23 0 0 ⟶ 24 2 3 , 23 0 1 ⟶ 24 2 4 , 23 0 5 ⟶ 24 2 6 , 23 0 7 ⟶ 24 2 8 , 23 0 9 ⟶ 24 2 10 , 23 0 11 ⟶ 24 2 12 , 23 0 13 ⟶ 24 2 14 , 5 6 3 ⟶ 1 16 16 15 , 5 6 4 ⟶ 1 16 16 16 , 5 6 6 ⟶ 1 16 16 2 , 5 6 8 ⟶ 1 16 16 25 , 5 6 10 ⟶ 1 16 16 26 , 5 6 12 ⟶ 1 16 16 27 , 5 6 14 ⟶ 1 16 16 28 , 2 6 3 ⟶ 16 16 16 15 , 2 6 4 ⟶ 16 16 16 16 , 2 6 6 ⟶ 16 16 16 2 , 2 6 8 ⟶ 16 16 16 25 , 2 6 10 ⟶ 16 16 16 26 , 2 6 12 ⟶ 16 16 16 27 , 2 6 14 ⟶ 16 16 16 28 , 6 6 3 ⟶ 4 16 16 15 , 6 6 4 ⟶ 4 16 16 16 , 6 6 6 ⟶ 4 16 16 2 , 6 6 8 ⟶ 4 16 16 25 , 6 6 10 ⟶ 4 16 16 26 , 6 6 12 ⟶ 4 16 16 27 , 6 6 14 ⟶ 4 16 16 28 , 29 6 3 ⟶ 18 16 16 15 , 29 6 4 ⟶ 18 16 16 16 , 29 6 6 ⟶ 18 16 16 2 , 29 6 8 ⟶ 18 16 16 25 , 29 6 10 ⟶ 18 16 16 26 , 29 6 12 ⟶ 18 16 16 27 , 29 6 14 ⟶ 18 16 16 28 , 30 6 3 ⟶ 20 16 16 15 , 30 6 4 ⟶ 20 16 16 16 , 30 6 6 ⟶ 20 16 16 2 , 30 6 8 ⟶ 20 16 16 25 , 30 6 10 ⟶ 20 16 16 26 , 30 6 12 ⟶ 20 16 16 27 , 30 6 14 ⟶ 20 16 16 28 , 31 6 3 ⟶ 22 16 16 15 , 31 6 4 ⟶ 22 16 16 16 , 31 6 6 ⟶ 22 16 16 2 , 31 6 8 ⟶ 22 16 16 25 , 31 6 10 ⟶ 22 16 16 26 , 31 6 12 ⟶ 22 16 16 27 , 31 6 14 ⟶ 22 16 16 28 , 32 6 3 ⟶ 24 16 16 15 , 32 6 4 ⟶ 24 16 16 16 , 32 6 6 ⟶ 24 16 16 2 , 32 6 8 ⟶ 24 16 16 25 , 32 6 10 ⟶ 24 16 16 26 , 32 6 12 ⟶ 24 16 16 27 , 32 6 14 ⟶ 24 16 16 28 , 5 3 ⟶ 7 17 , 5 4 ⟶ 7 18 , 5 6 ⟶ 7 29 , 5 8 ⟶ 7 33 , 5 10 ⟶ 7 34 , 5 12 ⟶ 7 35 , 5 14 ⟶ 7 36 , 2 3 ⟶ 25 17 , 2 4 ⟶ 25 18 , 2 6 ⟶ 25 29 , 2 8 ⟶ 25 33 , 2 10 ⟶ 25 34 , 2 12 ⟶ 25 35 , 2 14 ⟶ 25 36 , 6 3 ⟶ 8 17 , 6 4 ⟶ 8 18 , 6 6 ⟶ 8 29 , 6 8 ⟶ 8 33 , 6 10 ⟶ 8 34 , 6 12 ⟶ 8 35 , 6 14 ⟶ 8 36 , 29 3 ⟶ 33 17 , 29 4 ⟶ 33 18 , 29 6 ⟶ 33 29 , 29 8 ⟶ 33 33 , 29 10 ⟶ 33 34 , 29 12 ⟶ 33 35 , 29 14 ⟶ 33 36 , 30 3 ⟶ 37 17 , 30 4 ⟶ 37 18 , 30 6 ⟶ 37 29 , 30 8 ⟶ 37 33 , 30 10 ⟶ 37 34 , 30 12 ⟶ 37 35 , 30 14 ⟶ 37 36 , 31 3 ⟶ 38 17 , 31 4 ⟶ 38 18 , 31 6 ⟶ 38 29 , 31 8 ⟶ 38 33 , 31 10 ⟶ 38 34 , 31 12 ⟶ 38 35 , 31 14 ⟶ 38 36 , 32 3 ⟶ 39 17 , 32 4 ⟶ 39 18 , 32 6 ⟶ 39 29 , 32 8 ⟶ 39 33 , 32 10 ⟶ 39 34 , 32 12 ⟶ 39 35 , 32 14 ⟶ 39 36 , 1 16 15 ⟶ 9 30 3 , 1 16 16 ⟶ 9 30 4 , 1 16 2 ⟶ 9 30 6 , 1 16 25 ⟶ 9 30 8 , 1 16 26 ⟶ 9 30 10 , 1 16 27 ⟶ 9 30 12 , 1 16 28 ⟶ 9 30 14 , 16 16 15 ⟶ 26 30 3 , 16 16 16 ⟶ 26 30 4 , 16 16 2 ⟶ 26 30 6 , 16 16 25 ⟶ 26 30 8 , 16 16 26 ⟶ 26 30 10 , 16 16 27 ⟶ 26 30 12 , 16 16 28 ⟶ 26 30 14 , 4 16 15 ⟶ 10 30 3 , 4 16 16 ⟶ 10 30 4 , 4 16 2 ⟶ 10 30 6 , 4 16 25 ⟶ 10 30 8 , 4 16 26 ⟶ 10 30 10 , 4 16 27 ⟶ 10 30 12 , 4 16 28 ⟶ 10 30 14 , 18 16 15 ⟶ 34 30 3 , 18 16 16 ⟶ 34 30 4 , 18 16 2 ⟶ 34 30 6 , 18 16 25 ⟶ 34 30 8 , 18 16 26 ⟶ 34 30 10 , 18 16 27 ⟶ 34 30 12 , 18 16 28 ⟶ 34 30 14 , 20 16 15 ⟶ 40 30 3 , 20 16 16 ⟶ 40 30 4 , 20 16 2 ⟶ 40 30 6 , 20 16 25 ⟶ 40 30 8 , 20 16 26 ⟶ 40 30 10 , 20 16 27 ⟶ 40 30 12 , 20 16 28 ⟶ 40 30 14 , 22 16 15 ⟶ 41 30 3 , 22 16 16 ⟶ 41 30 4 , 22 16 2 ⟶ 41 30 6 , 22 16 25 ⟶ 41 30 8 , 22 16 26 ⟶ 41 30 10 , 22 16 27 ⟶ 41 30 12 , 22 16 28 ⟶ 41 30 14 , 24 16 15 ⟶ 42 30 3 , 24 16 16 ⟶ 42 30 4 , 24 16 2 ⟶ 42 30 6 , 24 16 25 ⟶ 42 30 8 , 24 16 26 ⟶ 42 30 10 , 24 16 27 ⟶ 42 30 12 , 24 16 28 ⟶ 42 30 14 , 1 16 16 15 ⟶ 5 8 17 , 1 16 16 16 ⟶ 5 8 18 , 1 16 16 2 ⟶ 5 8 29 , 1 16 16 25 ⟶ 5 8 33 , 1 16 16 26 ⟶ 5 8 34 , 1 16 16 27 ⟶ 5 8 35 , 1 16 16 28 ⟶ 5 8 36 , 16 16 16 15 ⟶ 2 8 17 , 16 16 16 16 ⟶ 2 8 18 , 16 16 16 2 ⟶ 2 8 29 , 16 16 16 25 ⟶ 2 8 33 , 16 16 16 26 ⟶ 2 8 34 , 16 16 16 27 ⟶ 2 8 35 , 16 16 16 28 ⟶ 2 8 36 , 4 16 16 15 ⟶ 6 8 17 , 4 16 16 16 ⟶ 6 8 18 , 4 16 16 2 ⟶ 6 8 29 , 4 16 16 25 ⟶ 6 8 33 , 4 16 16 26 ⟶ 6 8 34 , 4 16 16 27 ⟶ 6 8 35 , 4 16 16 28 ⟶ 6 8 36 , 18 16 16 15 ⟶ 29 8 17 , 18 16 16 16 ⟶ 29 8 18 , 18 16 16 2 ⟶ 29 8 29 , 18 16 16 25 ⟶ 29 8 33 , 18 16 16 26 ⟶ 29 8 34 , 18 16 16 27 ⟶ 29 8 35 , 18 16 16 28 ⟶ 29 8 36 , 20 16 16 15 ⟶ 30 8 17 , 20 16 16 16 ⟶ 30 8 18 , 20 16 16 2 ⟶ 30 8 29 , 20 16 16 25 ⟶ 30 8 33 , 20 16 16 26 ⟶ 30 8 34 , 20 16 16 27 ⟶ 30 8 35 , 20 16 16 28 ⟶ 30 8 36 , 22 16 16 15 ⟶ 31 8 17 , 22 16 16 16 ⟶ 31 8 18 , 22 16 16 2 ⟶ 31 8 29 , 22 16 16 25 ⟶ 31 8 33 , 22 16 16 26 ⟶ 31 8 34 , 22 16 16 27 ⟶ 31 8 35 , 22 16 16 28 ⟶ 31 8 36 , 24 16 16 15 ⟶ 32 8 17 , 24 16 16 16 ⟶ 32 8 18 , 24 16 16 2 ⟶ 32 8 29 , 24 16 16 25 ⟶ 32 8 33 , 24 16 16 26 ⟶ 32 8 34 , 24 16 16 27 ⟶ 32 8 35 , 24 16 16 28 ⟶ 32 8 36 , 9 19 ⟶ 7 35 21 , 9 20 ⟶ 7 35 22 , 9 30 ⟶ 7 35 31 , 9 37 ⟶ 7 35 38 , 9 40 ⟶ 7 35 41 , 26 19 ⟶ 25 35 21 , 26 20 ⟶ 25 35 22 , 26 30 ⟶ 25 35 31 , 26 37 ⟶ 25 35 38 , 26 40 ⟶ 25 35 41 , 10 19 ⟶ 8 35 21 , 10 20 ⟶ 8 35 22 , 10 30 ⟶ 8 35 31 , 10 37 ⟶ 8 35 38 , 10 40 ⟶ 8 35 41 , 34 19 ⟶ 33 35 21 , 34 20 ⟶ 33 35 22 , 34 30 ⟶ 33 35 31 , 34 37 ⟶ 33 35 38 , 34 40 ⟶ 33 35 41 , 40 19 ⟶ 37 35 21 , 40 20 ⟶ 37 35 22 , 40 30 ⟶ 37 35 31 , 40 37 ⟶ 37 35 38 , 40 40 ⟶ 37 35 41 , 41 19 ⟶ 38 35 21 , 41 20 ⟶ 38 35 22 , 41 30 ⟶ 38 35 31 , 41 37 ⟶ 38 35 38 , 41 40 ⟶ 38 35 41 , 42 19 ⟶ 39 35 21 , 42 20 ⟶ 39 35 22 , 42 30 ⟶ 39 35 31 , 42 37 ⟶ 39 35 38 , 42 40 ⟶ 39 35 41 , 7 17 ⟶ 0 11 22 15 , 7 18 ⟶ 0 11 22 16 , 7 29 ⟶ 0 11 22 2 , 7 33 ⟶ 0 11 22 25 , 7 34 ⟶ 0 11 22 26 , 7 35 ⟶ 0 11 22 27 , 7 36 ⟶ 0 11 22 28 , 25 17 ⟶ 15 11 22 15 , 25 18 ⟶ 15 11 22 16 , 25 29 ⟶ 15 11 22 2 , 25 33 ⟶ 15 11 22 25 , 25 34 ⟶ 15 11 22 26 , 25 35 ⟶ 15 11 22 27 , 25 36 ⟶ 15 11 22 28 , 8 17 ⟶ 3 11 22 15 , 8 18 ⟶ 3 11 22 16 , 8 29 ⟶ 3 11 22 2 , 8 33 ⟶ 3 11 22 25 , 8 34 ⟶ 3 11 22 26 , 8 35 ⟶ 3 11 22 27 , 8 36 ⟶ 3 11 22 28 , 33 17 ⟶ 17 11 22 15 , 33 18 ⟶ 17 11 22 16 , 33 29 ⟶ 17 11 22 2 , 33 33 ⟶ 17 11 22 25 , 33 34 ⟶ 17 11 22 26 , 33 35 ⟶ 17 11 22 27 , 33 36 ⟶ 17 11 22 28 , 37 17 ⟶ 19 11 22 15 , 37 18 ⟶ 19 11 22 16 , 37 29 ⟶ 19 11 22 2 , 37 33 ⟶ 19 11 22 25 , 37 34 ⟶ 19 11 22 26 , 37 35 ⟶ 19 11 22 27 , 37 36 ⟶ 19 11 22 28 , 38 17 ⟶ 21 11 22 15 , 38 18 ⟶ 21 11 22 16 , 38 29 ⟶ 21 11 22 2 , 38 33 ⟶ 21 11 22 25 , 38 34 ⟶ 21 11 22 26 , 38 35 ⟶ 21 11 22 27 , 38 36 ⟶ 21 11 22 28 , 39 17 ⟶ 23 11 22 15 , 39 18 ⟶ 23 11 22 16 , 39 29 ⟶ 23 11 22 2 , 39 33 ⟶ 23 11 22 25 , 39 34 ⟶ 23 11 22 26 , 39 35 ⟶ 23 11 22 27 , 39 36 ⟶ 23 11 22 28 , 7 33 17 ⟶ 5 3 0 , 7 33 18 ⟶ 5 3 1 , 7 33 29 ⟶ 5 3 5 , 7 33 33 ⟶ 5 3 7 , 7 33 34 ⟶ 5 3 9 , 7 33 35 ⟶ 5 3 11 , 7 33 36 ⟶ 5 3 13 , 25 33 17 ⟶ 2 3 0 , 25 33 18 ⟶ 2 3 1 , 25 33 29 ⟶ 2 3 5 , 25 33 33 ⟶ 2 3 7 , 25 33 34 ⟶ 2 3 9 , 25 33 35 ⟶ 2 3 11 , 25 33 36 ⟶ 2 3 13 , 8 33 17 ⟶ 6 3 0 , 8 33 18 ⟶ 6 3 1 , 8 33 29 ⟶ 6 3 5 , 8 33 33 ⟶ 6 3 7 , 8 33 34 ⟶ 6 3 9 , 8 33 35 ⟶ 6 3 11 , 8 33 36 ⟶ 6 3 13 , 33 33 17 ⟶ 29 3 0 , 33 33 18 ⟶ 29 3 1 , 33 33 29 ⟶ 29 3 5 , 33 33 33 ⟶ 29 3 7 , 33 33 34 ⟶ 29 3 9 , 33 33 35 ⟶ 29 3 11 , 33 33 36 ⟶ 29 3 13 , 37 33 17 ⟶ 30 3 0 , 37 33 18 ⟶ 30 3 1 , 37 33 29 ⟶ 30 3 5 , 37 33 33 ⟶ 30 3 7 , 37 33 34 ⟶ 30 3 9 , 37 33 35 ⟶ 30 3 11 , 37 33 36 ⟶ 30 3 13 , 38 33 17 ⟶ 31 3 0 , 38 33 18 ⟶ 31 3 1 , 38 33 29 ⟶ 31 3 5 , 38 33 33 ⟶ 31 3 7 , 38 33 34 ⟶ 31 3 9 , 38 33 35 ⟶ 31 3 11 , 38 33 36 ⟶ 31 3 13 , 39 33 17 ⟶ 32 3 0 , 39 33 18 ⟶ 32 3 1 , 39 33 29 ⟶ 32 3 5 , 39 33 33 ⟶ 32 3 7 , 39 33 34 ⟶ 32 3 9 , 39 33 35 ⟶ 32 3 11 , 39 33 36 ⟶ 32 3 13 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 30 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 23 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 23 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 41 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 35 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 23 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 35 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 32 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 44 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 23 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 35 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 12 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 12 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 29 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 23 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 30 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 24 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 16 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 10 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 32 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 26 ↦ ⎛ ⎞ ⎜ 1 23 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 27 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 28 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 29 ↦ ⎛ ⎞ ⎜ 1 24 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 30 ↦ ⎛ ⎞ ⎜ 1 10 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 31 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 32 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 33 ↦ ⎛ ⎞ ⎜ 1 33 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 34 ↦ ⎛ ⎞ ⎜ 1 24 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 35 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 36 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 37 ↦ ⎛ ⎞ ⎜ 1 19 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 38 ↦ ⎛ ⎞ ⎜ 1 9 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 39 ↦ ⎛ ⎞ ⎜ 1 9 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 40 ↦ ⎛ ⎞ ⎜ 1 10 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 41 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 42 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.