/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { q0 ↦ 0, 0 ↦ 1, 0' ↦ 2, q1 ↦ 3, 1' ↦ 4, 1 ↦ 5, q2 ↦ 6, q3 ↦ 7, b ↦ 8, q4 ↦ 9 }, it remains to prove termination of the 16-rule system { 0 1 ⟶ 2 3 , 3 1 ⟶ 1 3 , 3 4 ⟶ 4 3 , 1 3 5 ⟶ 6 1 4 , 2 3 5 ⟶ 6 2 4 , 4 3 5 ⟶ 6 4 4 , 1 6 1 ⟶ 6 1 1 , 2 6 1 ⟶ 6 2 1 , 4 6 1 ⟶ 6 4 1 , 1 6 4 ⟶ 6 1 4 , 2 6 4 ⟶ 6 2 4 , 4 6 4 ⟶ 6 4 4 , 6 2 ⟶ 2 0 , 0 4 ⟶ 4 7 , 7 4 ⟶ 4 7 , 7 8 ⟶ 8 9 } The system was reversed. After renaming modulo the bijection { 1 ↦ 0, 0 ↦ 1, 3 ↦ 2, 2 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7, 8 ↦ 8, 9 ↦ 9 }, it remains to prove termination of the 16-rule system { 0 1 ⟶ 2 3 , 0 2 ⟶ 2 0 , 4 2 ⟶ 2 4 , 5 2 0 ⟶ 4 0 6 , 5 2 3 ⟶ 4 3 6 , 5 2 4 ⟶ 4 4 6 , 0 6 0 ⟶ 0 0 6 , 0 6 3 ⟶ 0 3 6 , 0 6 4 ⟶ 0 4 6 , 4 6 0 ⟶ 4 0 6 , 4 6 3 ⟶ 4 3 6 , 4 6 4 ⟶ 4 4 6 , 3 6 ⟶ 1 3 , 4 1 ⟶ 7 4 , 4 7 ⟶ 7 4 , 8 7 ⟶ 9 8 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 4 ↦ 2, 6 ↦ 3, 3 ↦ 4, 1 ↦ 5, 7 ↦ 6 }, it remains to prove termination of the 11-rule system { 0 1 ⟶ 1 0 , 2 1 ⟶ 1 2 , 0 3 0 ⟶ 0 0 3 , 0 3 4 ⟶ 0 4 3 , 0 3 2 ⟶ 0 2 3 , 2 3 0 ⟶ 2 0 3 , 2 3 4 ⟶ 2 4 3 , 2 3 2 ⟶ 2 2 3 , 4 3 ⟶ 5 4 , 2 5 ⟶ 6 2 , 2 6 ⟶ 6 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6 }, it remains to prove termination of the 10-rule system { 0 1 ⟶ 1 0 , 2 1 ⟶ 1 2 , 0 3 0 ⟶ 0 0 3 , 0 3 4 ⟶ 0 4 3 , 0 3 2 ⟶ 0 2 3 , 2 3 0 ⟶ 2 0 3 , 2 3 4 ⟶ 2 4 3 , 2 3 2 ⟶ 2 2 3 , 4 3 ⟶ 5 4 , 2 6 ⟶ 6 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 6 ↦ 5 }, it remains to prove termination of the 9-rule system { 0 1 ⟶ 1 0 , 2 1 ⟶ 1 2 , 0 3 0 ⟶ 0 0 3 , 0 3 4 ⟶ 0 4 3 , 0 3 2 ⟶ 0 2 3 , 2 3 0 ⟶ 2 0 3 , 2 3 4 ⟶ 2 4 3 , 2 3 2 ⟶ 2 2 3 , 2 5 ⟶ 5 2 } Applying sparse untiling TRFCU(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 5 ↦ 3 }, it remains to prove termination of the 3-rule system { 0 1 ⟶ 1 0 , 2 1 ⟶ 1 2 , 2 3 ⟶ 3 2 } Applying sparse untiling TRFCU(2) after reversal [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.