/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 3-rule system { 0 1 ⟶ 1 2 0 , 1 2 ⟶ 2 1 1 , 0 2 ⟶ 2 0 1 } The system was reversed. After renaming modulo the bijection { 1 ↦ 0, 0 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 3-rule system { 0 1 ⟶ 1 2 0 , 2 0 ⟶ 0 0 2 , 2 1 ⟶ 0 1 2 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↑) ↦ 2, (0,↓) ↦ 3, (2,↓) ↦ 4 }, it remains to prove termination of the 10-rule system { 0 1 ⟶ 2 3 , 0 1 ⟶ 0 , 2 3 ⟶ 0 3 4 , 2 3 ⟶ 0 4 , 2 3 ⟶ 2 , 2 1 ⟶ 0 1 4 , 2 1 ⟶ 2 , 3 1 →= 1 4 3 , 4 3 →= 3 3 4 , 4 1 →= 3 1 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 2 ↦ 0, 3 ↦ 1, 0 ↦ 2, 4 ↦ 3, 1 ↦ 4 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 2 1 3 , 0 1 ⟶ 2 3 , 0 1 ⟶ 0 , 0 4 ⟶ 2 4 3 , 1 4 →= 4 3 1 , 3 1 →= 1 1 3 , 3 4 →= 1 4 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 4 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 4-rule system { 0 1 ⟶ 0 , 1 2 →= 2 3 1 , 3 1 →= 1 1 3 , 3 2 →= 1 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 3: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 1 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 1 2 ⎟ ⎝ ⎠ After renaming modulo the bijection { 1 ↦ 0, 2 ↦ 1, 3 ↦ 2 }, it remains to prove termination of the 3-rule system { 0 1 →= 1 2 0 , 2 0 →= 0 0 2 , 2 1 →= 0 1 2 } The system is trivially terminating.