/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { 0 ↦ 0, * ↦ 1, 1 ↦ 2, # ↦ 3, $ ↦ 4 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 1 2 , 2 1 ⟶ 0 3 , 3 0 ⟶ 0 3 , 3 2 ⟶ 2 3 , 3 4 ⟶ 1 4 , 3 3 ⟶ 3 , 3 1 ⟶ 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 1 ⟶ 1 2 , 2 1 ⟶ 0 3 , 3 0 ⟶ 0 3 , 3 2 ⟶ 2 3 , 3 4 ⟶ 1 4 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↑) ↦ 2, (3,↓) ↦ 3, (3,↑) ↦ 4, (0,↓) ↦ 5, (2,↓) ↦ 6, (4,↓) ↦ 7 }, it remains to prove termination of the 12-rule system { 0 1 ⟶ 2 , 2 1 ⟶ 0 3 , 2 1 ⟶ 4 , 4 5 ⟶ 0 3 , 4 5 ⟶ 4 , 4 6 ⟶ 2 3 , 4 6 ⟶ 4 , 5 1 →= 1 6 , 6 1 →= 5 3 , 3 5 →= 5 3 , 3 6 →= 6 3 , 3 7 →= 1 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 2 ↦ 0, 1 ↦ 1, 0 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7 }, it remains to prove termination of the 8-rule system { 0 1 ⟶ 2 3 , 4 5 ⟶ 2 3 , 4 6 ⟶ 0 3 , 5 1 →= 1 6 , 6 1 →= 5 3 , 3 5 →= 5 3 , 3 6 →= 6 3 , 3 7 →= 1 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 6 ↦ 1, 0 ↦ 2, 3 ↦ 3, 5 ↦ 4, 1 ↦ 5, 7 ↦ 6 }, it remains to prove termination of the 6-rule system { 0 1 ⟶ 2 3 , 4 5 →= 5 1 , 1 5 →= 4 3 , 3 4 →= 4 3 , 3 1 →= 1 3 , 3 6 →= 5 6 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 5 ↦ 1, 1 ↦ 2, 3 ↦ 3, 6 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 1 →= 1 2 , 2 1 →= 0 3 , 3 0 →= 0 3 , 3 2 →= 2 3 , 3 4 →= 1 4 } The system is trivially terminating.