/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { d ↦ 0, a ↦ 1, b ↦ 2, c ↦ 3 }, it remains to prove termination of the 4-rule system { 0 1 ⟶ 2 0 , 2 ⟶ 1 1 1 , 3 0 3 ⟶ 1 0 , 2 0 0 ⟶ 3 3 0 0 3 } The system was reversed. After renaming modulo the bijection { 1 ↦ 0, 0 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 4-rule system { 0 1 ⟶ 1 2 , 2 ⟶ 0 0 0 , 3 1 3 ⟶ 1 0 , 1 1 2 ⟶ 3 1 1 3 3 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (1,↑) ↦ 2, (2,↓) ↦ 3, (2,↑) ↦ 4, (0,↓) ↦ 5, (3,↑) ↦ 6, (3,↓) ↦ 7 }, it remains to prove termination of the 16-rule system { 0 1 ⟶ 2 3 , 0 1 ⟶ 4 , 4 ⟶ 0 5 5 , 4 ⟶ 0 5 , 4 ⟶ 0 , 6 1 7 ⟶ 2 5 , 6 1 7 ⟶ 0 , 2 1 3 ⟶ 6 1 1 7 7 , 2 1 3 ⟶ 2 1 7 7 , 2 1 3 ⟶ 2 7 7 , 2 1 3 ⟶ 6 7 , 2 1 3 ⟶ 6 , 5 1 →= 1 3 , 3 →= 5 5 5 , 7 1 7 →= 1 5 , 1 1 3 →= 7 1 1 7 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 6 ↦ 0, 1 ↦ 1, 7 ↦ 2, 2 ↦ 3, 5 ↦ 4, 3 ↦ 5 }, it remains to prove termination of the 7-rule system { 0 1 2 ⟶ 3 4 , 3 1 5 ⟶ 0 1 1 2 2 , 3 1 5 ⟶ 3 1 2 2 , 4 1 →= 1 5 , 5 →= 4 4 4 , 2 1 2 →= 1 4 , 1 1 5 →= 2 1 1 2 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 1 ↦ 1, 5 ↦ 2, 0 ↦ 3, 2 ↦ 4, 4 ↦ 5 }, it remains to prove termination of the 6-rule system { 0 1 2 ⟶ 3 1 1 4 4 , 0 1 2 ⟶ 0 1 4 4 , 5 1 →= 1 2 , 2 →= 5 5 5 , 4 1 4 →= 1 5 , 1 1 2 →= 4 1 1 4 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3, 5 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 1 2 ⟶ 0 1 3 3 , 4 1 →= 1 2 , 2 →= 4 4 4 , 3 1 3 →= 1 4 , 1 1 2 →= 3 1 1 3 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 1 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 4-rule system { 0 1 →= 1 2 , 2 →= 0 0 0 , 3 1 3 →= 1 0 , 1 1 2 →= 3 1 1 3 3 } The system is trivially terminating.