/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 158-rule system { 0 1 0 ⟶ 0 0 1 2 , 0 1 0 ⟶ 0 1 2 0 , 0 1 0 ⟶ 0 1 3 0 , 0 1 0 ⟶ 1 2 0 0 , 0 1 0 ⟶ 1 3 0 0 , 0 1 0 ⟶ 0 0 1 2 4 , 0 1 0 ⟶ 0 0 1 4 4 , 0 1 0 ⟶ 0 0 4 1 2 , 0 1 0 ⟶ 0 1 2 0 2 , 0 1 0 ⟶ 0 1 3 0 2 , 0 1 0 ⟶ 0 1 3 0 4 , 0 1 0 ⟶ 0 1 4 5 0 , 0 1 0 ⟶ 0 2 1 3 0 , 0 1 0 ⟶ 0 3 1 3 0 , 0 1 0 ⟶ 0 4 1 2 0 , 0 1 0 ⟶ 0 4 1 3 0 , 0 1 0 ⟶ 1 1 2 0 0 , 0 1 0 ⟶ 1 2 0 5 0 , 0 1 0 ⟶ 1 2 2 0 0 , 0 1 0 ⟶ 1 2 3 0 0 , 0 1 0 ⟶ 1 2 5 0 0 , 0 1 0 ⟶ 1 3 0 2 0 , 0 1 0 ⟶ 1 3 0 3 0 , 0 1 0 ⟶ 1 3 0 4 0 , 0 1 0 ⟶ 1 3 0 5 0 , 0 1 0 ⟶ 1 4 2 0 0 , 0 1 0 ⟶ 1 4 3 0 0 , 0 1 0 ⟶ 1 5 2 0 0 , 0 1 0 ⟶ 2 0 0 2 1 , 0 1 0 ⟶ 2 0 0 3 1 , 0 1 0 ⟶ 2 1 2 0 0 , 0 1 0 ⟶ 2 1 3 0 0 , 0 1 0 ⟶ 2 1 5 0 0 , 0 1 0 ⟶ 3 1 2 0 0 , 0 1 0 ⟶ 3 1 3 0 0 , 0 1 0 ⟶ 4 1 3 0 0 , 0 1 0 ⟶ 0 0 2 1 2 4 , 0 1 0 ⟶ 0 0 3 4 1 2 , 0 1 0 ⟶ 0 0 4 1 2 2 , 0 1 0 ⟶ 0 0 5 1 4 4 , 0 1 0 ⟶ 0 0 5 5 1 2 , 0 1 0 ⟶ 0 1 1 2 5 0 , 0 1 0 ⟶ 0 1 2 2 3 0 , 0 1 0 ⟶ 0 1 3 0 4 2 , 0 1 0 ⟶ 0 1 4 1 3 0 , 0 1 0 ⟶ 0 2 0 2 1 2 , 0 1 0 ⟶ 0 2 1 4 4 0 , 0 1 0 ⟶ 0 2 1 4 5 0 , 0 1 0 ⟶ 0 2 2 1 2 0 , 0 1 0 ⟶ 0 2 5 1 2 0 , 0 1 0 ⟶ 0 3 1 3 0 4 , 0 1 0 ⟶ 0 3 4 1 3 0 , 0 1 0 ⟶ 0 4 5 1 3 0 , 0 1 0 ⟶ 1 1 1 2 0 0 , 0 1 0 ⟶ 1 1 1 3 0 0 , 0 1 0 ⟶ 1 1 2 0 3 0 , 0 1 0 ⟶ 1 1 2 2 0 0 , 0 1 0 ⟶ 1 1 3 0 5 0 , 0 1 0 ⟶ 1 1 4 5 0 0 , 0 1 0 ⟶ 1 2 2 5 0 0 , 0 1 0 ⟶ 1 3 1 5 0 0 , 0 1 0 ⟶ 1 3 5 0 0 2 , 0 1 0 ⟶ 1 4 2 2 0 0 , 0 1 0 ⟶ 1 4 4 0 0 2 , 0 1 0 ⟶ 1 4 4 3 0 0 , 0 1 0 ⟶ 1 4 4 5 0 0 , 0 1 0 ⟶ 1 5 0 1 3 0 , 0 1 0 ⟶ 2 0 0 1 2 1 , 0 1 0 ⟶ 2 0 0 2 1 4 , 0 1 0 ⟶ 2 0 0 2 3 1 , 0 1 0 ⟶ 2 0 0 5 1 2 , 0 1 0 ⟶ 2 0 1 1 2 0 , 0 1 0 ⟶ 2 0 4 1 2 0 , 0 1 0 ⟶ 2 1 0 2 4 0 , 0 1 0 ⟶ 2 1 5 0 3 0 , 0 1 0 ⟶ 2 2 1 3 0 0 , 0 1 0 ⟶ 3 1 2 0 2 0 , 0 1 0 ⟶ 3 5 0 0 1 2 , 0 1 0 ⟶ 4 1 2 0 3 0 , 0 1 0 ⟶ 4 2 0 0 1 2 , 0 1 0 ⟶ 4 2 1 3 0 0 , 0 1 0 ⟶ 4 3 1 5 0 0 , 0 1 0 ⟶ 4 5 1 3 0 0 , 0 1 0 ⟶ 5 0 0 1 1 2 , 0 1 0 ⟶ 5 0 0 2 1 2 , 0 1 0 ⟶ 5 1 2 0 5 0 , 0 1 0 ⟶ 5 1 2 3 0 0 , 0 1 0 ⟶ 5 1 2 5 0 0 , 0 1 0 ⟶ 5 1 3 0 0 2 , 0 1 0 ⟶ 5 1 3 0 3 0 , 0 1 0 ⟶ 5 1 4 3 0 0 , 0 1 0 ⟶ 5 5 1 3 0 0 , 0 0 0 0 ⟶ 0 0 0 2 0 , 0 0 1 0 ⟶ 0 0 0 3 1 , 0 0 1 0 ⟶ 0 0 1 2 0 , 0 0 1 0 ⟶ 0 0 0 1 3 1 , 0 0 1 0 ⟶ 0 0 2 1 3 0 , 0 0 1 0 ⟶ 0 0 2 2 1 0 , 0 0 1 0 ⟶ 0 0 4 2 1 0 , 0 0 1 0 ⟶ 0 0 5 0 1 2 , 0 0 1 0 ⟶ 0 1 2 4 0 0 , 0 0 1 0 ⟶ 0 1 3 0 3 0 , 0 0 1 0 ⟶ 0 2 1 5 0 0 , 0 0 1 0 ⟶ 0 5 1 2 0 0 , 0 1 0 0 ⟶ 1 3 0 0 0 , 0 1 0 0 ⟶ 0 0 0 1 2 4 , 0 1 0 0 ⟶ 0 0 1 4 2 0 , 0 1 0 0 ⟶ 0 0 4 1 2 0 , 0 1 0 0 ⟶ 0 1 3 0 0 4 , 0 1 0 0 ⟶ 0 1 4 3 0 0 , 0 1 0 0 ⟶ 0 2 0 1 3 0 , 0 1 0 0 ⟶ 1 2 4 0 0 0 , 0 1 0 4 ⟶ 0 0 1 2 4 , 0 1 0 4 ⟶ 0 0 1 4 2 , 0 1 0 4 ⟶ 0 0 4 1 2 , 0 1 0 4 ⟶ 1 2 0 0 4 , 0 1 0 4 ⟶ 0 0 5 1 4 2 , 0 1 0 4 ⟶ 1 2 0 4 5 0 , 0 1 0 4 ⟶ 1 4 4 0 2 0 , 0 1 1 0 ⟶ 0 1 1 3 0 , 0 1 1 0 ⟶ 1 1 3 0 0 , 0 1 1 0 ⟶ 0 0 1 1 2 4 , 0 1 1 0 ⟶ 0 1 0 5 3 1 , 0 1 1 0 ⟶ 0 1 4 3 1 0 , 0 1 1 0 ⟶ 0 2 0 1 4 1 , 0 1 1 0 ⟶ 0 4 1 2 1 0 , 0 1 1 0 ⟶ 0 4 1 4 1 0 , 0 1 1 0 ⟶ 0 5 0 2 1 1 , 0 1 1 0 ⟶ 0 5 1 3 1 0 , 0 1 1 0 ⟶ 1 1 1 3 0 0 , 0 1 1 0 ⟶ 1 2 0 0 2 1 , 0 1 1 0 ⟶ 1 4 5 0 1 0 , 0 1 1 0 ⟶ 2 0 1 2 1 0 , 0 1 1 0 ⟶ 2 1 0 0 2 1 , 0 1 1 0 ⟶ 2 1 2 0 0 1 , 0 1 1 0 ⟶ 4 1 1 3 0 0 , 0 4 1 0 ⟶ 0 0 4 1 2 , 0 4 1 0 ⟶ 0 0 4 1 2 4 , 0 4 1 0 ⟶ 0 3 0 1 4 2 , 0 4 1 0 ⟶ 0 5 1 4 5 0 , 0 5 1 0 ⟶ 1 2 5 0 0 , 0 5 1 0 ⟶ 1 5 2 0 0 , 0 5 1 0 ⟶ 4 3 1 5 0 0 , 0 5 1 0 ⟶ 5 2 1 2 0 0 , 0 5 4 0 ⟶ 0 1 4 5 0 , 0 5 4 0 ⟶ 5 0 0 1 4 4 , 0 0 0 1 0 ⟶ 0 0 0 2 1 0 , 0 1 0 4 4 ⟶ 0 0 4 4 1 3 , 0 1 0 4 4 ⟶ 0 4 4 1 3 0 , 0 1 0 4 4 ⟶ 3 1 4 4 0 0 , 0 1 1 1 0 ⟶ 0 0 1 1 2 1 , 0 2 0 1 0 ⟶ 0 3 1 2 0 0 , 0 3 0 1 0 ⟶ 0 5 0 0 3 1 , 0 4 4 1 0 ⟶ 0 0 4 1 2 4 , 0 4 5 1 0 ⟶ 0 0 5 4 1 2 , 0 5 0 1 0 ⟶ 5 0 0 1 2 0 , 0 5 1 1 0 ⟶ 0 1 5 1 3 0 , 0 5 4 4 0 ⟶ 4 0 4 5 0 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 153-rule system { 0 1 0 ⟶ 0 0 1 2 , 0 1 0 ⟶ 0 1 2 0 , 0 1 0 ⟶ 0 1 3 0 , 0 1 0 ⟶ 1 2 0 0 , 0 1 0 ⟶ 1 3 0 0 , 0 1 0 ⟶ 0 0 1 2 4 , 0 1 0 ⟶ 0 0 1 4 4 , 0 1 0 ⟶ 0 0 4 1 2 , 0 1 0 ⟶ 0 1 2 0 2 , 0 1 0 ⟶ 0 1 3 0 2 , 0 1 0 ⟶ 0 1 3 0 4 , 0 1 0 ⟶ 0 1 4 5 0 , 0 1 0 ⟶ 0 2 1 3 0 , 0 1 0 ⟶ 0 3 1 3 0 , 0 1 0 ⟶ 0 4 1 2 0 , 0 1 0 ⟶ 0 4 1 3 0 , 0 1 0 ⟶ 1 1 2 0 0 , 0 1 0 ⟶ 1 2 0 5 0 , 0 1 0 ⟶ 1 2 2 0 0 , 0 1 0 ⟶ 1 2 3 0 0 , 0 1 0 ⟶ 1 2 5 0 0 , 0 1 0 ⟶ 1 3 0 2 0 , 0 1 0 ⟶ 1 3 0 3 0 , 0 1 0 ⟶ 1 3 0 4 0 , 0 1 0 ⟶ 1 3 0 5 0 , 0 1 0 ⟶ 1 4 2 0 0 , 0 1 0 ⟶ 1 4 3 0 0 , 0 1 0 ⟶ 1 5 2 0 0 , 0 1 0 ⟶ 2 0 0 2 1 , 0 1 0 ⟶ 2 0 0 3 1 , 0 1 0 ⟶ 2 1 2 0 0 , 0 1 0 ⟶ 2 1 3 0 0 , 0 1 0 ⟶ 2 1 5 0 0 , 0 1 0 ⟶ 3 1 2 0 0 , 0 1 0 ⟶ 3 1 3 0 0 , 0 1 0 ⟶ 4 1 3 0 0 , 0 1 0 ⟶ 0 0 2 1 2 4 , 0 1 0 ⟶ 0 0 3 4 1 2 , 0 1 0 ⟶ 0 0 4 1 2 2 , 0 1 0 ⟶ 0 0 5 1 4 4 , 0 1 0 ⟶ 0 0 5 5 1 2 , 0 1 0 ⟶ 0 1 1 2 5 0 , 0 1 0 ⟶ 0 1 2 2 3 0 , 0 1 0 ⟶ 0 1 3 0 4 2 , 0 1 0 ⟶ 0 1 4 1 3 0 , 0 1 0 ⟶ 0 2 0 2 1 2 , 0 1 0 ⟶ 0 2 1 4 4 0 , 0 1 0 ⟶ 0 2 1 4 5 0 , 0 1 0 ⟶ 0 2 2 1 2 0 , 0 1 0 ⟶ 0 2 5 1 2 0 , 0 1 0 ⟶ 0 3 1 3 0 4 , 0 1 0 ⟶ 0 3 4 1 3 0 , 0 1 0 ⟶ 0 4 5 1 3 0 , 0 1 0 ⟶ 1 1 1 2 0 0 , 0 1 0 ⟶ 1 1 1 3 0 0 , 0 1 0 ⟶ 1 1 2 0 3 0 , 0 1 0 ⟶ 1 1 2 2 0 0 , 0 1 0 ⟶ 1 1 3 0 5 0 , 0 1 0 ⟶ 1 1 4 5 0 0 , 0 1 0 ⟶ 1 2 2 5 0 0 , 0 1 0 ⟶ 1 3 1 5 0 0 , 0 1 0 ⟶ 1 3 5 0 0 2 , 0 1 0 ⟶ 1 4 2 2 0 0 , 0 1 0 ⟶ 1 4 4 0 0 2 , 0 1 0 ⟶ 1 4 4 3 0 0 , 0 1 0 ⟶ 1 4 4 5 0 0 , 0 1 0 ⟶ 1 5 0 1 3 0 , 0 1 0 ⟶ 2 0 0 1 2 1 , 0 1 0 ⟶ 2 0 0 2 1 4 , 0 1 0 ⟶ 2 0 0 2 3 1 , 0 1 0 ⟶ 2 0 0 5 1 2 , 0 1 0 ⟶ 2 0 1 1 2 0 , 0 1 0 ⟶ 2 0 4 1 2 0 , 0 1 0 ⟶ 2 1 0 2 4 0 , 0 1 0 ⟶ 2 1 5 0 3 0 , 0 1 0 ⟶ 2 2 1 3 0 0 , 0 1 0 ⟶ 3 1 2 0 2 0 , 0 1 0 ⟶ 3 5 0 0 1 2 , 0 1 0 ⟶ 4 1 2 0 3 0 , 0 1 0 ⟶ 4 2 0 0 1 2 , 0 1 0 ⟶ 4 2 1 3 0 0 , 0 1 0 ⟶ 4 3 1 5 0 0 , 0 1 0 ⟶ 4 5 1 3 0 0 , 0 1 0 ⟶ 5 0 0 1 1 2 , 0 1 0 ⟶ 5 0 0 2 1 2 , 0 1 0 ⟶ 5 1 2 0 5 0 , 0 1 0 ⟶ 5 1 2 3 0 0 , 0 1 0 ⟶ 5 1 2 5 0 0 , 0 1 0 ⟶ 5 1 3 0 0 2 , 0 1 0 ⟶ 5 1 3 0 3 0 , 0 1 0 ⟶ 5 1 4 3 0 0 , 0 1 0 ⟶ 5 5 1 3 0 0 , 0 0 0 0 ⟶ 0 0 0 2 0 , 0 0 1 0 ⟶ 0 0 0 3 1 , 0 0 1 0 ⟶ 0 0 1 2 0 , 0 0 1 0 ⟶ 0 0 0 1 3 1 , 0 0 1 0 ⟶ 0 0 2 1 3 0 , 0 0 1 0 ⟶ 0 0 2 2 1 0 , 0 0 1 0 ⟶ 0 0 4 2 1 0 , 0 0 1 0 ⟶ 0 0 5 0 1 2 , 0 0 1 0 ⟶ 0 1 2 4 0 0 , 0 0 1 0 ⟶ 0 1 3 0 3 0 , 0 0 1 0 ⟶ 0 2 1 5 0 0 , 0 0 1 0 ⟶ 0 5 1 2 0 0 , 0 1 0 0 ⟶ 1 3 0 0 0 , 0 1 0 0 ⟶ 0 0 0 1 2 4 , 0 1 0 0 ⟶ 0 0 1 4 2 0 , 0 1 0 0 ⟶ 0 0 4 1 2 0 , 0 1 0 0 ⟶ 0 1 3 0 0 4 , 0 1 0 0 ⟶ 0 1 4 3 0 0 , 0 1 0 0 ⟶ 0 2 0 1 3 0 , 0 1 0 0 ⟶ 1 2 4 0 0 0 , 0 1 0 4 ⟶ 0 0 1 2 4 , 0 1 0 4 ⟶ 0 0 1 4 2 , 0 1 0 4 ⟶ 0 0 4 1 2 , 0 1 0 4 ⟶ 1 2 0 0 4 , 0 1 0 4 ⟶ 0 0 5 1 4 2 , 0 1 0 4 ⟶ 1 2 0 4 5 0 , 0 1 0 4 ⟶ 1 4 4 0 2 0 , 0 1 1 0 ⟶ 0 1 1 3 0 , 0 1 1 0 ⟶ 1 1 3 0 0 , 0 1 1 0 ⟶ 0 0 1 1 2 4 , 0 1 1 0 ⟶ 0 1 0 5 3 1 , 0 1 1 0 ⟶ 0 1 4 3 1 0 , 0 1 1 0 ⟶ 0 2 0 1 4 1 , 0 1 1 0 ⟶ 0 4 1 2 1 0 , 0 1 1 0 ⟶ 0 4 1 4 1 0 , 0 1 1 0 ⟶ 0 5 0 2 1 1 , 0 1 1 0 ⟶ 0 5 1 3 1 0 , 0 1 1 0 ⟶ 1 1 1 3 0 0 , 0 1 1 0 ⟶ 1 2 0 0 2 1 , 0 1 1 0 ⟶ 1 4 5 0 1 0 , 0 1 1 0 ⟶ 2 0 1 2 1 0 , 0 1 1 0 ⟶ 2 1 0 0 2 1 , 0 1 1 0 ⟶ 2 1 2 0 0 1 , 0 1 1 0 ⟶ 4 1 1 3 0 0 , 0 4 1 0 ⟶ 0 0 4 1 2 , 0 4 1 0 ⟶ 0 0 4 1 2 4 , 0 4 1 0 ⟶ 0 3 0 1 4 2 , 0 4 1 0 ⟶ 0 5 1 4 5 0 , 0 5 4 0 ⟶ 0 1 4 5 0 , 0 5 4 0 ⟶ 5 0 0 1 4 4 , 0 0 0 1 0 ⟶ 0 0 0 2 1 0 , 0 1 0 4 4 ⟶ 0 0 4 4 1 3 , 0 1 0 4 4 ⟶ 0 4 4 1 3 0 , 0 1 0 4 4 ⟶ 3 1 4 4 0 0 , 0 1 1 1 0 ⟶ 0 0 1 1 2 1 , 0 2 0 1 0 ⟶ 0 3 1 2 0 0 , 0 3 0 1 0 ⟶ 0 5 0 0 3 1 , 0 4 4 1 0 ⟶ 0 0 4 1 2 4 , 0 5 0 1 0 ⟶ 5 0 0 1 2 0 , 0 5 1 1 0 ⟶ 0 1 5 1 3 0 , 0 5 4 4 0 ⟶ 4 0 4 5 0 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 152-rule system { 0 1 0 ⟶ 0 0 1 2 , 0 1 0 ⟶ 0 1 2 0 , 0 1 0 ⟶ 0 1 3 0 , 0 1 0 ⟶ 1 2 0 0 , 0 1 0 ⟶ 1 3 0 0 , 0 1 0 ⟶ 0 0 1 2 4 , 0 1 0 ⟶ 0 0 1 4 4 , 0 1 0 ⟶ 0 0 4 1 2 , 0 1 0 ⟶ 0 1 2 0 2 , 0 1 0 ⟶ 0 1 3 0 2 , 0 1 0 ⟶ 0 1 3 0 4 , 0 1 0 ⟶ 0 1 4 5 0 , 0 1 0 ⟶ 0 2 1 3 0 , 0 1 0 ⟶ 0 3 1 3 0 , 0 1 0 ⟶ 0 4 1 2 0 , 0 1 0 ⟶ 0 4 1 3 0 , 0 1 0 ⟶ 1 1 2 0 0 , 0 1 0 ⟶ 1 2 0 5 0 , 0 1 0 ⟶ 1 2 2 0 0 , 0 1 0 ⟶ 1 2 3 0 0 , 0 1 0 ⟶ 1 2 5 0 0 , 0 1 0 ⟶ 1 3 0 2 0 , 0 1 0 ⟶ 1 3 0 3 0 , 0 1 0 ⟶ 1 3 0 4 0 , 0 1 0 ⟶ 1 3 0 5 0 , 0 1 0 ⟶ 1 4 2 0 0 , 0 1 0 ⟶ 1 4 3 0 0 , 0 1 0 ⟶ 1 5 2 0 0 , 0 1 0 ⟶ 2 0 0 2 1 , 0 1 0 ⟶ 2 0 0 3 1 , 0 1 0 ⟶ 2 1 2 0 0 , 0 1 0 ⟶ 2 1 3 0 0 , 0 1 0 ⟶ 2 1 5 0 0 , 0 1 0 ⟶ 3 1 2 0 0 , 0 1 0 ⟶ 3 1 3 0 0 , 0 1 0 ⟶ 4 1 3 0 0 , 0 1 0 ⟶ 0 0 2 1 2 4 , 0 1 0 ⟶ 0 0 3 4 1 2 , 0 1 0 ⟶ 0 0 4 1 2 2 , 0 1 0 ⟶ 0 0 5 1 4 4 , 0 1 0 ⟶ 0 0 5 5 1 2 , 0 1 0 ⟶ 0 1 1 2 5 0 , 0 1 0 ⟶ 0 1 2 2 3 0 , 0 1 0 ⟶ 0 1 3 0 4 2 , 0 1 0 ⟶ 0 1 4 1 3 0 , 0 1 0 ⟶ 0 2 0 2 1 2 , 0 1 0 ⟶ 0 2 1 4 4 0 , 0 1 0 ⟶ 0 2 1 4 5 0 , 0 1 0 ⟶ 0 2 2 1 2 0 , 0 1 0 ⟶ 0 2 5 1 2 0 , 0 1 0 ⟶ 0 3 1 3 0 4 , 0 1 0 ⟶ 0 3 4 1 3 0 , 0 1 0 ⟶ 0 4 5 1 3 0 , 0 1 0 ⟶ 1 1 1 2 0 0 , 0 1 0 ⟶ 1 1 1 3 0 0 , 0 1 0 ⟶ 1 1 2 0 3 0 , 0 1 0 ⟶ 1 1 2 2 0 0 , 0 1 0 ⟶ 1 1 3 0 5 0 , 0 1 0 ⟶ 1 1 4 5 0 0 , 0 1 0 ⟶ 1 2 2 5 0 0 , 0 1 0 ⟶ 1 3 1 5 0 0 , 0 1 0 ⟶ 1 3 5 0 0 2 , 0 1 0 ⟶ 1 4 2 2 0 0 , 0 1 0 ⟶ 1 4 4 0 0 2 , 0 1 0 ⟶ 1 4 4 3 0 0 , 0 1 0 ⟶ 1 4 4 5 0 0 , 0 1 0 ⟶ 1 5 0 1 3 0 , 0 1 0 ⟶ 2 0 0 1 2 1 , 0 1 0 ⟶ 2 0 0 2 1 4 , 0 1 0 ⟶ 2 0 0 2 3 1 , 0 1 0 ⟶ 2 0 0 5 1 2 , 0 1 0 ⟶ 2 0 1 1 2 0 , 0 1 0 ⟶ 2 0 4 1 2 0 , 0 1 0 ⟶ 2 1 0 2 4 0 , 0 1 0 ⟶ 2 1 5 0 3 0 , 0 1 0 ⟶ 2 2 1 3 0 0 , 0 1 0 ⟶ 3 1 2 0 2 0 , 0 1 0 ⟶ 3 5 0 0 1 2 , 0 1 0 ⟶ 4 1 2 0 3 0 , 0 1 0 ⟶ 4 2 0 0 1 2 , 0 1 0 ⟶ 4 2 1 3 0 0 , 0 1 0 ⟶ 4 3 1 5 0 0 , 0 1 0 ⟶ 4 5 1 3 0 0 , 0 1 0 ⟶ 5 0 0 1 1 2 , 0 1 0 ⟶ 5 0 0 2 1 2 , 0 1 0 ⟶ 5 1 2 0 5 0 , 0 1 0 ⟶ 5 1 2 3 0 0 , 0 1 0 ⟶ 5 1 2 5 0 0 , 0 1 0 ⟶ 5 1 3 0 0 2 , 0 1 0 ⟶ 5 1 3 0 3 0 , 0 1 0 ⟶ 5 1 4 3 0 0 , 0 1 0 ⟶ 5 5 1 3 0 0 , 0 0 0 0 ⟶ 0 0 0 2 0 , 0 0 1 0 ⟶ 0 0 0 3 1 , 0 0 1 0 ⟶ 0 0 1 2 0 , 0 0 1 0 ⟶ 0 0 0 1 3 1 , 0 0 1 0 ⟶ 0 0 2 1 3 0 , 0 0 1 0 ⟶ 0 0 2 2 1 0 , 0 0 1 0 ⟶ 0 0 4 2 1 0 , 0 0 1 0 ⟶ 0 0 5 0 1 2 , 0 0 1 0 ⟶ 0 1 2 4 0 0 , 0 0 1 0 ⟶ 0 1 3 0 3 0 , 0 0 1 0 ⟶ 0 2 1 5 0 0 , 0 0 1 0 ⟶ 0 5 1 2 0 0 , 0 1 0 0 ⟶ 1 3 0 0 0 , 0 1 0 0 ⟶ 0 0 0 1 2 4 , 0 1 0 0 ⟶ 0 0 1 4 2 0 , 0 1 0 0 ⟶ 0 0 4 1 2 0 , 0 1 0 0 ⟶ 0 1 3 0 0 4 , 0 1 0 0 ⟶ 0 1 4 3 0 0 , 0 1 0 0 ⟶ 0 2 0 1 3 0 , 0 1 0 0 ⟶ 1 2 4 0 0 0 , 0 1 0 4 ⟶ 0 0 1 2 4 , 0 1 0 4 ⟶ 0 0 1 4 2 , 0 1 0 4 ⟶ 0 0 4 1 2 , 0 1 0 4 ⟶ 1 2 0 0 4 , 0 1 0 4 ⟶ 0 0 5 1 4 2 , 0 1 0 4 ⟶ 1 2 0 4 5 0 , 0 1 0 4 ⟶ 1 4 4 0 2 0 , 0 1 1 0 ⟶ 0 1 1 3 0 , 0 1 1 0 ⟶ 1 1 3 0 0 , 0 1 1 0 ⟶ 0 0 1 1 2 4 , 0 1 1 0 ⟶ 0 1 0 5 3 1 , 0 1 1 0 ⟶ 0 1 4 3 1 0 , 0 1 1 0 ⟶ 0 2 0 1 4 1 , 0 1 1 0 ⟶ 0 4 1 2 1 0 , 0 1 1 0 ⟶ 0 4 1 4 1 0 , 0 1 1 0 ⟶ 0 5 0 2 1 1 , 0 1 1 0 ⟶ 0 5 1 3 1 0 , 0 1 1 0 ⟶ 1 1 1 3 0 0 , 0 1 1 0 ⟶ 1 2 0 0 2 1 , 0 1 1 0 ⟶ 1 4 5 0 1 0 , 0 1 1 0 ⟶ 2 0 1 2 1 0 , 0 1 1 0 ⟶ 2 1 0 0 2 1 , 0 1 1 0 ⟶ 2 1 2 0 0 1 , 0 1 1 0 ⟶ 4 1 1 3 0 0 , 0 4 1 0 ⟶ 0 0 4 1 2 , 0 4 1 0 ⟶ 0 0 4 1 2 4 , 0 4 1 0 ⟶ 0 3 0 1 4 2 , 0 4 1 0 ⟶ 0 5 1 4 5 0 , 0 5 4 0 ⟶ 0 1 4 5 0 , 0 5 4 0 ⟶ 5 0 0 1 4 4 , 0 0 0 1 0 ⟶ 0 0 0 2 1 0 , 0 1 0 4 4 ⟶ 0 0 4 4 1 3 , 0 1 0 4 4 ⟶ 0 4 4 1 3 0 , 0 1 0 4 4 ⟶ 3 1 4 4 0 0 , 0 1 1 1 0 ⟶ 0 0 1 1 2 1 , 0 2 0 1 0 ⟶ 0 3 1 2 0 0 , 0 3 0 1 0 ⟶ 0 5 0 0 3 1 , 0 4 4 1 0 ⟶ 0 0 4 1 2 4 , 0 5 0 1 0 ⟶ 5 0 0 1 2 0 , 0 5 4 4 0 ⟶ 4 0 4 5 0 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 1 1 1 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 135-rule system { 0 1 0 ⟶ 0 0 1 2 , 0 1 0 ⟶ 0 1 2 0 , 0 1 0 ⟶ 0 1 3 0 , 0 1 0 ⟶ 1 2 0 0 , 0 1 0 ⟶ 1 3 0 0 , 0 1 0 ⟶ 0 0 1 2 4 , 0 1 0 ⟶ 0 0 1 4 4 , 0 1 0 ⟶ 0 0 4 1 2 , 0 1 0 ⟶ 0 1 2 0 2 , 0 1 0 ⟶ 0 1 3 0 2 , 0 1 0 ⟶ 0 1 3 0 4 , 0 1 0 ⟶ 0 1 4 5 0 , 0 1 0 ⟶ 0 2 1 3 0 , 0 1 0 ⟶ 0 3 1 3 0 , 0 1 0 ⟶ 0 4 1 2 0 , 0 1 0 ⟶ 0 4 1 3 0 , 0 1 0 ⟶ 1 1 2 0 0 , 0 1 0 ⟶ 1 2 0 5 0 , 0 1 0 ⟶ 1 2 2 0 0 , 0 1 0 ⟶ 1 2 3 0 0 , 0 1 0 ⟶ 1 2 5 0 0 , 0 1 0 ⟶ 1 3 0 2 0 , 0 1 0 ⟶ 1 3 0 3 0 , 0 1 0 ⟶ 1 3 0 4 0 , 0 1 0 ⟶ 1 3 0 5 0 , 0 1 0 ⟶ 1 4 2 0 0 , 0 1 0 ⟶ 1 4 3 0 0 , 0 1 0 ⟶ 1 5 2 0 0 , 0 1 0 ⟶ 2 0 0 2 1 , 0 1 0 ⟶ 2 0 0 3 1 , 0 1 0 ⟶ 2 1 2 0 0 , 0 1 0 ⟶ 2 1 3 0 0 , 0 1 0 ⟶ 2 1 5 0 0 , 0 1 0 ⟶ 3 1 2 0 0 , 0 1 0 ⟶ 3 1 3 0 0 , 0 1 0 ⟶ 4 1 3 0 0 , 0 1 0 ⟶ 0 0 2 1 2 4 , 0 1 0 ⟶ 0 0 3 4 1 2 , 0 1 0 ⟶ 0 0 4 1 2 2 , 0 1 0 ⟶ 0 0 5 1 4 4 , 0 1 0 ⟶ 0 0 5 5 1 2 , 0 1 0 ⟶ 0 1 1 2 5 0 , 0 1 0 ⟶ 0 1 2 2 3 0 , 0 1 0 ⟶ 0 1 3 0 4 2 , 0 1 0 ⟶ 0 1 4 1 3 0 , 0 1 0 ⟶ 0 2 0 2 1 2 , 0 1 0 ⟶ 0 2 1 4 4 0 , 0 1 0 ⟶ 0 2 1 4 5 0 , 0 1 0 ⟶ 0 2 2 1 2 0 , 0 1 0 ⟶ 0 2 5 1 2 0 , 0 1 0 ⟶ 0 3 1 3 0 4 , 0 1 0 ⟶ 0 3 4 1 3 0 , 0 1 0 ⟶ 0 4 5 1 3 0 , 0 1 0 ⟶ 1 1 1 2 0 0 , 0 1 0 ⟶ 1 1 1 3 0 0 , 0 1 0 ⟶ 1 1 2 0 3 0 , 0 1 0 ⟶ 1 1 2 2 0 0 , 0 1 0 ⟶ 1 1 3 0 5 0 , 0 1 0 ⟶ 1 1 4 5 0 0 , 0 1 0 ⟶ 1 2 2 5 0 0 , 0 1 0 ⟶ 1 3 1 5 0 0 , 0 1 0 ⟶ 1 3 5 0 0 2 , 0 1 0 ⟶ 1 4 2 2 0 0 , 0 1 0 ⟶ 1 4 4 0 0 2 , 0 1 0 ⟶ 1 4 4 3 0 0 , 0 1 0 ⟶ 1 4 4 5 0 0 , 0 1 0 ⟶ 1 5 0 1 3 0 , 0 1 0 ⟶ 2 0 0 1 2 1 , 0 1 0 ⟶ 2 0 0 2 1 4 , 0 1 0 ⟶ 2 0 0 2 3 1 , 0 1 0 ⟶ 2 0 0 5 1 2 , 0 1 0 ⟶ 2 0 1 1 2 0 , 0 1 0 ⟶ 2 0 4 1 2 0 , 0 1 0 ⟶ 2 1 0 2 4 0 , 0 1 0 ⟶ 2 1 5 0 3 0 , 0 1 0 ⟶ 2 2 1 3 0 0 , 0 1 0 ⟶ 3 1 2 0 2 0 , 0 1 0 ⟶ 3 5 0 0 1 2 , 0 1 0 ⟶ 4 1 2 0 3 0 , 0 1 0 ⟶ 4 2 0 0 1 2 , 0 1 0 ⟶ 4 2 1 3 0 0 , 0 1 0 ⟶ 4 3 1 5 0 0 , 0 1 0 ⟶ 4 5 1 3 0 0 , 0 1 0 ⟶ 5 0 0 1 1 2 , 0 1 0 ⟶ 5 0 0 2 1 2 , 0 1 0 ⟶ 5 1 2 0 5 0 , 0 1 0 ⟶ 5 1 2 3 0 0 , 0 1 0 ⟶ 5 1 2 5 0 0 , 0 1 0 ⟶ 5 1 3 0 0 2 , 0 1 0 ⟶ 5 1 3 0 3 0 , 0 1 0 ⟶ 5 1 4 3 0 0 , 0 1 0 ⟶ 5 5 1 3 0 0 , 0 0 0 0 ⟶ 0 0 0 2 0 , 0 0 1 0 ⟶ 0 0 0 3 1 , 0 0 1 0 ⟶ 0 0 1 2 0 , 0 0 1 0 ⟶ 0 0 0 1 3 1 , 0 0 1 0 ⟶ 0 0 2 1 3 0 , 0 0 1 0 ⟶ 0 0 2 2 1 0 , 0 0 1 0 ⟶ 0 0 4 2 1 0 , 0 0 1 0 ⟶ 0 0 5 0 1 2 , 0 0 1 0 ⟶ 0 1 2 4 0 0 , 0 0 1 0 ⟶ 0 1 3 0 3 0 , 0 0 1 0 ⟶ 0 2 1 5 0 0 , 0 0 1 0 ⟶ 0 5 1 2 0 0 , 0 1 0 0 ⟶ 1 3 0 0 0 , 0 1 0 0 ⟶ 0 0 0 1 2 4 , 0 1 0 0 ⟶ 0 0 1 4 2 0 , 0 1 0 0 ⟶ 0 0 4 1 2 0 , 0 1 0 0 ⟶ 0 1 3 0 0 4 , 0 1 0 0 ⟶ 0 1 4 3 0 0 , 0 1 0 0 ⟶ 0 2 0 1 3 0 , 0 1 0 0 ⟶ 1 2 4 0 0 0 , 0 1 0 4 ⟶ 0 0 1 2 4 , 0 1 0 4 ⟶ 0 0 1 4 2 , 0 1 0 4 ⟶ 0 0 4 1 2 , 0 1 0 4 ⟶ 1 2 0 0 4 , 0 1 0 4 ⟶ 0 0 5 1 4 2 , 0 1 0 4 ⟶ 1 2 0 4 5 0 , 0 1 0 4 ⟶ 1 4 4 0 2 0 , 0 4 1 0 ⟶ 0 0 4 1 2 , 0 4 1 0 ⟶ 0 0 4 1 2 4 , 0 4 1 0 ⟶ 0 3 0 1 4 2 , 0 4 1 0 ⟶ 0 5 1 4 5 0 , 0 5 4 0 ⟶ 0 1 4 5 0 , 0 5 4 0 ⟶ 5 0 0 1 4 4 , 0 0 0 1 0 ⟶ 0 0 0 2 1 0 , 0 1 0 4 4 ⟶ 0 0 4 4 1 3 , 0 1 0 4 4 ⟶ 0 4 4 1 3 0 , 0 1 0 4 4 ⟶ 3 1 4 4 0 0 , 0 1 1 1 0 ⟶ 0 0 1 1 2 1 , 0 2 0 1 0 ⟶ 0 3 1 2 0 0 , 0 3 0 1 0 ⟶ 0 5 0 0 3 1 , 0 4 4 1 0 ⟶ 0 0 4 1 2 4 , 0 5 0 1 0 ⟶ 5 0 0 1 2 0 , 0 5 4 4 0 ⟶ 4 0 4 5 0 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 1 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 5 ↦ 2, 4 ↦ 3, 1 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 0 0 0 ⟶ 0 0 0 1 0 , 0 2 3 0 ⟶ 0 4 3 2 0 , 0 2 3 0 ⟶ 2 0 0 4 3 3 , 0 4 4 4 0 ⟶ 0 0 4 4 1 4 , 0 2 3 3 0 ⟶ 3 0 3 2 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4 }, it remains to prove termination of the 4-rule system { 0 0 0 0 ⟶ 0 0 0 1 0 , 0 2 3 0 ⟶ 0 4 3 2 0 , 0 2 3 0 ⟶ 2 0 0 4 3 3 , 0 2 3 3 0 ⟶ 3 0 3 2 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 1 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 3 ↦ 2, 4 ↦ 3, 1 ↦ 4 }, it remains to prove termination of the 3-rule system { 0 1 2 0 ⟶ 0 3 2 1 0 , 0 1 2 0 ⟶ 1 0 0 3 2 2 , 0 1 2 2 0 ⟶ 2 0 2 1 0 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 2-rule system { 0 1 2 0 ⟶ 0 3 2 1 0 , 0 1 2 0 ⟶ 1 0 0 3 2 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.