/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { b ↦ 0, a ↦ 1 }, it remains to prove termination of the 3-rule system { 0 0 ⟶ 1 1 1 , 1 1 0 ⟶ 0 , 1 0 1 ⟶ 1 0 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1 }, it remains to prove termination of the 3-rule system { 0 0 ⟶ 1 1 1 , 0 1 1 ⟶ 0 , 1 0 1 ⟶ 0 0 1 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (0,↓) ↦ 1, (1,↑) ↦ 2, (1,↓) ↦ 3 }, it remains to prove termination of the 8-rule system { 0 1 ⟶ 2 3 3 , 0 1 ⟶ 2 3 , 0 1 ⟶ 2 , 0 3 3 ⟶ 0 , 2 1 3 ⟶ 0 1 3 , 1 1 →= 3 3 3 , 1 3 3 →= 1 , 3 1 3 →= 1 1 3 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (4,2) ↦ 3, (2,3) ↦ 4, (3,3) ↦ 5, (3,1) ↦ 6, (1,3) ↦ 7, (1,5) ↦ 8, (3,5) ↦ 9, (2,1) ↦ 10, (2,5) ↦ 11, (0,3) ↦ 12, (0,5) ↦ 13, (4,1) ↦ 14, (4,3) ↦ 15 }, it remains to prove termination of the 60-rule system { 0 1 2 ⟶ 3 4 5 6 , 0 1 7 ⟶ 3 4 5 5 , 0 1 8 ⟶ 3 4 5 9 , 0 1 2 ⟶ 3 4 6 , 0 1 7 ⟶ 3 4 5 , 0 1 8 ⟶ 3 4 9 , 0 1 2 ⟶ 3 10 , 0 1 7 ⟶ 3 4 , 0 1 8 ⟶ 3 11 , 0 12 5 6 ⟶ 0 1 , 0 12 5 5 ⟶ 0 12 , 0 12 5 9 ⟶ 0 13 , 3 10 7 6 ⟶ 0 1 7 6 , 3 10 7 5 ⟶ 0 1 7 5 , 3 10 7 9 ⟶ 0 1 7 9 , 1 2 2 →= 12 5 5 6 , 1 2 7 →= 12 5 5 5 , 1 2 8 →= 12 5 5 9 , 2 2 2 →= 7 5 5 6 , 2 2 7 →= 7 5 5 5 , 2 2 8 →= 7 5 5 9 , 10 2 2 →= 4 5 5 6 , 10 2 7 →= 4 5 5 5 , 10 2 8 →= 4 5 5 9 , 6 2 2 →= 5 5 5 6 , 6 2 7 →= 5 5 5 5 , 6 2 8 →= 5 5 5 9 , 14 2 2 →= 15 5 5 6 , 14 2 7 →= 15 5 5 5 , 14 2 8 →= 15 5 5 9 , 1 7 5 6 →= 1 2 , 1 7 5 5 →= 1 7 , 1 7 5 9 →= 1 8 , 2 7 5 6 →= 2 2 , 2 7 5 5 →= 2 7 , 2 7 5 9 →= 2 8 , 10 7 5 6 →= 10 2 , 10 7 5 5 →= 10 7 , 10 7 5 9 →= 10 8 , 6 7 5 6 →= 6 2 , 6 7 5 5 →= 6 7 , 6 7 5 9 →= 6 8 , 14 7 5 6 →= 14 2 , 14 7 5 5 →= 14 7 , 14 7 5 9 →= 14 8 , 12 6 7 6 →= 1 2 7 6 , 12 6 7 5 →= 1 2 7 5 , 12 6 7 9 →= 1 2 7 9 , 7 6 7 6 →= 2 2 7 6 , 7 6 7 5 →= 2 2 7 5 , 7 6 7 9 →= 2 2 7 9 , 4 6 7 6 →= 10 2 7 6 , 4 6 7 5 →= 10 2 7 5 , 4 6 7 9 →= 10 2 7 9 , 5 6 7 6 →= 6 2 7 6 , 5 6 7 5 →= 6 2 7 5 , 5 6 7 9 →= 6 2 7 9 , 15 6 7 6 →= 14 2 7 6 , 15 6 7 5 →= 14 2 7 5 , 15 6 7 9 →= 14 2 7 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7, 8 ↦ 8, 9 ↦ 9, 10 ↦ 10, 12 ↦ 11, 14 ↦ 12, 15 ↦ 13 }, it remains to prove termination of the 58-rule system { 0 1 2 ⟶ 3 4 5 6 , 0 1 7 ⟶ 3 4 5 5 , 0 1 8 ⟶ 3 4 5 9 , 0 1 2 ⟶ 3 4 6 , 0 1 7 ⟶ 3 4 5 , 0 1 8 ⟶ 3 4 9 , 0 1 2 ⟶ 3 10 , 0 1 7 ⟶ 3 4 , 0 11 5 6 ⟶ 0 1 , 0 11 5 5 ⟶ 0 11 , 3 10 7 6 ⟶ 0 1 7 6 , 3 10 7 5 ⟶ 0 1 7 5 , 3 10 7 9 ⟶ 0 1 7 9 , 1 2 2 →= 11 5 5 6 , 1 2 7 →= 11 5 5 5 , 1 2 8 →= 11 5 5 9 , 2 2 2 →= 7 5 5 6 , 2 2 7 →= 7 5 5 5 , 2 2 8 →= 7 5 5 9 , 10 2 2 →= 4 5 5 6 , 10 2 7 →= 4 5 5 5 , 10 2 8 →= 4 5 5 9 , 6 2 2 →= 5 5 5 6 , 6 2 7 →= 5 5 5 5 , 6 2 8 →= 5 5 5 9 , 12 2 2 →= 13 5 5 6 , 12 2 7 →= 13 5 5 5 , 12 2 8 →= 13 5 5 9 , 1 7 5 6 →= 1 2 , 1 7 5 5 →= 1 7 , 1 7 5 9 →= 1 8 , 2 7 5 6 →= 2 2 , 2 7 5 5 →= 2 7 , 2 7 5 9 →= 2 8 , 10 7 5 6 →= 10 2 , 10 7 5 5 →= 10 7 , 10 7 5 9 →= 10 8 , 6 7 5 6 →= 6 2 , 6 7 5 5 →= 6 7 , 6 7 5 9 →= 6 8 , 12 7 5 6 →= 12 2 , 12 7 5 5 →= 12 7 , 12 7 5 9 →= 12 8 , 11 6 7 6 →= 1 2 7 6 , 11 6 7 5 →= 1 2 7 5 , 11 6 7 9 →= 1 2 7 9 , 7 6 7 6 →= 2 2 7 6 , 7 6 7 5 →= 2 2 7 5 , 7 6 7 9 →= 2 2 7 9 , 4 6 7 6 →= 10 2 7 6 , 4 6 7 5 →= 10 2 7 5 , 4 6 7 9 →= 10 2 7 9 , 5 6 7 6 →= 6 2 7 6 , 5 6 7 5 →= 6 2 7 5 , 5 6 7 9 →= 6 2 7 9 , 13 6 7 6 →= 12 2 7 6 , 13 6 7 5 →= 12 2 7 5 , 13 6 7 9 →= 12 2 7 9 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (14,0) ↦ 0, (0,1) ↦ 1, (1,2) ↦ 2, (2,2) ↦ 3, (14,3) ↦ 4, (3,4) ↦ 5, (4,5) ↦ 6, (5,6) ↦ 7, (6,2) ↦ 8, (2,7) ↦ 9, (6,7) ↦ 10, (2,8) ↦ 11, (6,8) ↦ 12, (2,15) ↦ 13, (6,15) ↦ 14, (1,7) ↦ 15, (7,5) ↦ 16, (5,5) ↦ 17, (7,6) ↦ 18, (7,9) ↦ 19, (5,9) ↦ 20, (7,15) ↦ 21, (5,15) ↦ 22, (1,8) ↦ 23, (8,15) ↦ 24, (9,15) ↦ 25, (4,6) ↦ 26, (4,9) ↦ 27, (3,10) ↦ 28, (10,2) ↦ 29, (10,7) ↦ 30, (10,8) ↦ 31, (10,15) ↦ 32, (4,15) ↦ 33, (0,11) ↦ 34, (11,5) ↦ 35, (1,15) ↦ 36, (11,6) ↦ 37, (11,9) ↦ 38, (11,15) ↦ 39, (14,1) ↦ 40, (14,11) ↦ 41, (12,2) ↦ 42, (12,7) ↦ 43, (14,2) ↦ 44, (14,7) ↦ 45, (14,10) ↦ 46, (14,4) ↦ 47, (13,6) ↦ 48, (13,5) ↦ 49, (14,6) ↦ 50, (14,5) ↦ 51, (14,12) ↦ 52, (14,13) ↦ 53, (12,8) ↦ 54 }, it remains to prove termination of the 502-rule system { 0 1 2 3 ⟶ 4 5 6 7 8 , 0 1 2 9 ⟶ 4 5 6 7 10 , 0 1 2 11 ⟶ 4 5 6 7 12 , 0 1 2 13 ⟶ 4 5 6 7 14 , 0 1 15 16 ⟶ 4 5 6 17 17 , 0 1 15 18 ⟶ 4 5 6 17 7 , 0 1 15 19 ⟶ 4 5 6 17 20 , 0 1 15 21 ⟶ 4 5 6 17 22 , 0 1 23 24 ⟶ 4 5 6 20 25 , 0 1 2 3 ⟶ 4 5 26 8 , 0 1 2 9 ⟶ 4 5 26 10 , 0 1 2 11 ⟶ 4 5 26 12 , 0 1 2 13 ⟶ 4 5 26 14 , 0 1 15 16 ⟶ 4 5 6 17 , 0 1 15 18 ⟶ 4 5 6 7 , 0 1 15 19 ⟶ 4 5 6 20 , 0 1 15 21 ⟶ 4 5 6 22 , 0 1 23 24 ⟶ 4 5 27 25 , 0 1 2 3 ⟶ 4 28 29 , 0 1 2 9 ⟶ 4 28 30 , 0 1 2 11 ⟶ 4 28 31 , 0 1 2 13 ⟶ 4 28 32 , 0 1 15 16 ⟶ 4 5 6 , 0 1 15 18 ⟶ 4 5 26 , 0 1 15 19 ⟶ 4 5 27 , 0 1 15 21 ⟶ 4 5 33 , 0 34 35 7 8 ⟶ 0 1 2 , 0 34 35 7 10 ⟶ 0 1 15 , 0 34 35 7 12 ⟶ 0 1 23 , 0 34 35 7 14 ⟶ 0 1 36 , 0 34 35 17 17 ⟶ 0 34 35 , 0 34 35 17 7 ⟶ 0 34 37 , 0 34 35 17 20 ⟶ 0 34 38 , 0 34 35 17 22 ⟶ 0 34 39 , 4 28 30 18 8 ⟶ 0 1 15 18 8 , 4 28 30 18 10 ⟶ 0 1 15 18 10 , 4 28 30 18 12 ⟶ 0 1 15 18 12 , 4 28 30 18 14 ⟶ 0 1 15 18 14 , 4 28 30 16 17 ⟶ 0 1 15 16 17 , 4 28 30 16 7 ⟶ 0 1 15 16 7 , 4 28 30 16 20 ⟶ 0 1 15 16 20 , 4 28 30 16 22 ⟶ 0 1 15 16 22 , 4 28 30 19 25 ⟶ 0 1 15 19 25 , 1 2 3 3 →= 34 35 17 7 8 , 1 2 3 9 →= 34 35 17 7 10 , 1 2 3 11 →= 34 35 17 7 12 , 1 2 3 13 →= 34 35 17 7 14 , 40 2 3 3 →= 41 35 17 7 8 , 40 2 3 9 →= 41 35 17 7 10 , 40 2 3 11 →= 41 35 17 7 12 , 40 2 3 13 →= 41 35 17 7 14 , 1 2 9 16 →= 34 35 17 17 17 , 1 2 9 18 →= 34 35 17 17 7 , 1 2 9 19 →= 34 35 17 17 20 , 1 2 9 21 →= 34 35 17 17 22 , 40 2 9 16 →= 41 35 17 17 17 , 40 2 9 18 →= 41 35 17 17 7 , 40 2 9 19 →= 41 35 17 17 20 , 40 2 9 21 →= 41 35 17 17 22 , 1 2 11 24 →= 34 35 17 20 25 , 40 2 11 24 →= 41 35 17 20 25 , 2 3 3 3 →= 15 16 17 7 8 , 2 3 3 9 →= 15 16 17 7 10 , 2 3 3 11 →= 15 16 17 7 12 , 2 3 3 13 →= 15 16 17 7 14 , 3 3 3 3 →= 9 16 17 7 8 , 3 3 3 9 →= 9 16 17 7 10 , 3 3 3 11 →= 9 16 17 7 12 , 3 3 3 13 →= 9 16 17 7 14 , 8 3 3 3 →= 10 16 17 7 8 , 8 3 3 9 →= 10 16 17 7 10 , 8 3 3 11 →= 10 16 17 7 12 , 8 3 3 13 →= 10 16 17 7 14 , 29 3 3 3 →= 30 16 17 7 8 , 29 3 3 9 →= 30 16 17 7 10 , 29 3 3 11 →= 30 16 17 7 12 , 29 3 3 13 →= 30 16 17 7 14 , 42 3 3 3 →= 43 16 17 7 8 , 42 3 3 9 →= 43 16 17 7 10 , 42 3 3 11 →= 43 16 17 7 12 , 42 3 3 13 →= 43 16 17 7 14 , 44 3 3 3 →= 45 16 17 7 8 , 44 3 3 9 →= 45 16 17 7 10 , 44 3 3 11 →= 45 16 17 7 12 , 44 3 3 13 →= 45 16 17 7 14 , 2 3 9 16 →= 15 16 17 17 17 , 2 3 9 18 →= 15 16 17 17 7 , 2 3 9 19 →= 15 16 17 17 20 , 2 3 9 21 →= 15 16 17 17 22 , 3 3 9 16 →= 9 16 17 17 17 , 3 3 9 18 →= 9 16 17 17 7 , 3 3 9 19 →= 9 16 17 17 20 , 3 3 9 21 →= 9 16 17 17 22 , 8 3 9 16 →= 10 16 17 17 17 , 8 3 9 18 →= 10 16 17 17 7 , 8 3 9 19 →= 10 16 17 17 20 , 8 3 9 21 →= 10 16 17 17 22 , 29 3 9 16 →= 30 16 17 17 17 , 29 3 9 18 →= 30 16 17 17 7 , 29 3 9 19 →= 30 16 17 17 20 , 29 3 9 21 →= 30 16 17 17 22 , 42 3 9 16 →= 43 16 17 17 17 , 42 3 9 18 →= 43 16 17 17 7 , 42 3 9 19 →= 43 16 17 17 20 , 42 3 9 21 →= 43 16 17 17 22 , 44 3 9 16 →= 45 16 17 17 17 , 44 3 9 18 →= 45 16 17 17 7 , 44 3 9 19 →= 45 16 17 17 20 , 44 3 9 21 →= 45 16 17 17 22 , 2 3 11 24 →= 15 16 17 20 25 , 3 3 11 24 →= 9 16 17 20 25 , 8 3 11 24 →= 10 16 17 20 25 , 29 3 11 24 →= 30 16 17 20 25 , 42 3 11 24 →= 43 16 17 20 25 , 44 3 11 24 →= 45 16 17 20 25 , 28 29 3 3 →= 5 6 17 7 8 , 28 29 3 9 →= 5 6 17 7 10 , 28 29 3 11 →= 5 6 17 7 12 , 28 29 3 13 →= 5 6 17 7 14 , 46 29 3 3 →= 47 6 17 7 8 , 46 29 3 9 →= 47 6 17 7 10 , 46 29 3 11 →= 47 6 17 7 12 , 46 29 3 13 →= 47 6 17 7 14 , 28 29 9 16 →= 5 6 17 17 17 , 28 29 9 18 →= 5 6 17 17 7 , 28 29 9 19 →= 5 6 17 17 20 , 28 29 9 21 →= 5 6 17 17 22 , 46 29 9 16 →= 47 6 17 17 17 , 46 29 9 18 →= 47 6 17 17 7 , 46 29 9 19 →= 47 6 17 17 20 , 46 29 9 21 →= 47 6 17 17 22 , 28 29 11 24 →= 5 6 17 20 25 , 46 29 11 24 →= 47 6 17 20 25 , 26 8 3 3 →= 6 17 17 7 8 , 26 8 3 9 →= 6 17 17 7 10 , 26 8 3 11 →= 6 17 17 7 12 , 26 8 3 13 →= 6 17 17 7 14 , 7 8 3 3 →= 17 17 17 7 8 , 7 8 3 9 →= 17 17 17 7 10 , 7 8 3 11 →= 17 17 17 7 12 , 7 8 3 13 →= 17 17 17 7 14 , 18 8 3 3 →= 16 17 17 7 8 , 18 8 3 9 →= 16 17 17 7 10 , 18 8 3 11 →= 16 17 17 7 12 , 18 8 3 13 →= 16 17 17 7 14 , 37 8 3 3 →= 35 17 17 7 8 , 37 8 3 9 →= 35 17 17 7 10 , 37 8 3 11 →= 35 17 17 7 12 , 37 8 3 13 →= 35 17 17 7 14 , 48 8 3 3 →= 49 17 17 7 8 , 48 8 3 9 →= 49 17 17 7 10 , 48 8 3 11 →= 49 17 17 7 12 , 48 8 3 13 →= 49 17 17 7 14 , 50 8 3 3 →= 51 17 17 7 8 , 50 8 3 9 →= 51 17 17 7 10 , 50 8 3 11 →= 51 17 17 7 12 , 50 8 3 13 →= 51 17 17 7 14 , 26 8 9 16 →= 6 17 17 17 17 , 26 8 9 18 →= 6 17 17 17 7 , 26 8 9 19 →= 6 17 17 17 20 , 26 8 9 21 →= 6 17 17 17 22 , 7 8 9 16 →= 17 17 17 17 17 , 7 8 9 18 →= 17 17 17 17 7 , 7 8 9 19 →= 17 17 17 17 20 , 7 8 9 21 →= 17 17 17 17 22 , 18 8 9 16 →= 16 17 17 17 17 , 18 8 9 18 →= 16 17 17 17 7 , 18 8 9 19 →= 16 17 17 17 20 , 18 8 9 21 →= 16 17 17 17 22 , 37 8 9 16 →= 35 17 17 17 17 , 37 8 9 18 →= 35 17 17 17 7 , 37 8 9 19 →= 35 17 17 17 20 , 37 8 9 21 →= 35 17 17 17 22 , 48 8 9 16 →= 49 17 17 17 17 , 48 8 9 18 →= 49 17 17 17 7 , 48 8 9 19 →= 49 17 17 17 20 , 48 8 9 21 →= 49 17 17 17 22 , 50 8 9 16 →= 51 17 17 17 17 , 50 8 9 18 →= 51 17 17 17 7 , 50 8 9 19 →= 51 17 17 17 20 , 50 8 9 21 →= 51 17 17 17 22 , 26 8 11 24 →= 6 17 17 20 25 , 7 8 11 24 →= 17 17 17 20 25 , 18 8 11 24 →= 16 17 17 20 25 , 37 8 11 24 →= 35 17 17 20 25 , 48 8 11 24 →= 49 17 17 20 25 , 50 8 11 24 →= 51 17 17 20 25 , 52 42 3 3 →= 53 49 17 7 8 , 52 42 3 9 →= 53 49 17 7 10 , 52 42 3 11 →= 53 49 17 7 12 , 52 42 3 13 →= 53 49 17 7 14 , 52 42 9 16 →= 53 49 17 17 17 , 52 42 9 18 →= 53 49 17 17 7 , 52 42 9 19 →= 53 49 17 17 20 , 52 42 9 21 →= 53 49 17 17 22 , 52 42 11 24 →= 53 49 17 20 25 , 1 15 16 7 8 →= 1 2 3 , 1 15 16 7 10 →= 1 2 9 , 1 15 16 7 12 →= 1 2 11 , 1 15 16 7 14 →= 1 2 13 , 40 15 16 7 8 →= 40 2 3 , 40 15 16 7 10 →= 40 2 9 , 40 15 16 7 12 →= 40 2 11 , 40 15 16 7 14 →= 40 2 13 , 1 15 16 17 17 →= 1 15 16 , 1 15 16 17 7 →= 1 15 18 , 1 15 16 17 20 →= 1 15 19 , 1 15 16 17 22 →= 1 15 21 , 40 15 16 17 17 →= 40 15 16 , 40 15 16 17 7 →= 40 15 18 , 40 15 16 17 20 →= 40 15 19 , 40 15 16 17 22 →= 40 15 21 , 1 15 16 20 25 →= 1 23 24 , 40 15 16 20 25 →= 40 23 24 , 2 9 16 7 8 →= 2 3 3 , 2 9 16 7 10 →= 2 3 9 , 2 9 16 7 12 →= 2 3 11 , 2 9 16 7 14 →= 2 3 13 , 3 9 16 7 8 →= 3 3 3 , 3 9 16 7 10 →= 3 3 9 , 3 9 16 7 12 →= 3 3 11 , 3 9 16 7 14 →= 3 3 13 , 8 9 16 7 8 →= 8 3 3 , 8 9 16 7 10 →= 8 3 9 , 8 9 16 7 12 →= 8 3 11 , 8 9 16 7 14 →= 8 3 13 , 29 9 16 7 8 →= 29 3 3 , 29 9 16 7 10 →= 29 3 9 , 29 9 16 7 12 →= 29 3 11 , 29 9 16 7 14 →= 29 3 13 , 42 9 16 7 8 →= 42 3 3 , 42 9 16 7 10 →= 42 3 9 , 42 9 16 7 12 →= 42 3 11 , 42 9 16 7 14 →= 42 3 13 , 44 9 16 7 8 →= 44 3 3 , 44 9 16 7 10 →= 44 3 9 , 44 9 16 7 12 →= 44 3 11 , 44 9 16 7 14 →= 44 3 13 , 2 9 16 17 17 →= 2 9 16 , 2 9 16 17 7 →= 2 9 18 , 2 9 16 17 20 →= 2 9 19 , 2 9 16 17 22 →= 2 9 21 , 3 9 16 17 17 →= 3 9 16 , 3 9 16 17 7 →= 3 9 18 , 3 9 16 17 20 →= 3 9 19 , 3 9 16 17 22 →= 3 9 21 , 8 9 16 17 17 →= 8 9 16 , 8 9 16 17 7 →= 8 9 18 , 8 9 16 17 20 →= 8 9 19 , 8 9 16 17 22 →= 8 9 21 , 29 9 16 17 17 →= 29 9 16 , 29 9 16 17 7 →= 29 9 18 , 29 9 16 17 20 →= 29 9 19 , 29 9 16 17 22 →= 29 9 21 , 42 9 16 17 17 →= 42 9 16 , 42 9 16 17 7 →= 42 9 18 , 42 9 16 17 20 →= 42 9 19 , 42 9 16 17 22 →= 42 9 21 , 44 9 16 17 17 →= 44 9 16 , 44 9 16 17 7 →= 44 9 18 , 44 9 16 17 20 →= 44 9 19 , 44 9 16 17 22 →= 44 9 21 , 2 9 16 20 25 →= 2 11 24 , 3 9 16 20 25 →= 3 11 24 , 8 9 16 20 25 →= 8 11 24 , 29 9 16 20 25 →= 29 11 24 , 42 9 16 20 25 →= 42 11 24 , 44 9 16 20 25 →= 44 11 24 , 28 30 16 7 8 →= 28 29 3 , 28 30 16 7 10 →= 28 29 9 , 28 30 16 7 12 →= 28 29 11 , 28 30 16 7 14 →= 28 29 13 , 46 30 16 7 8 →= 46 29 3 , 46 30 16 7 10 →= 46 29 9 , 46 30 16 7 12 →= 46 29 11 , 46 30 16 7 14 →= 46 29 13 , 28 30 16 17 17 →= 28 30 16 , 28 30 16 17 7 →= 28 30 18 , 28 30 16 17 20 →= 28 30 19 , 28 30 16 17 22 →= 28 30 21 , 46 30 16 17 17 →= 46 30 16 , 46 30 16 17 7 →= 46 30 18 , 46 30 16 17 20 →= 46 30 19 , 46 30 16 17 22 →= 46 30 21 , 28 30 16 20 25 →= 28 31 24 , 46 30 16 20 25 →= 46 31 24 , 26 10 16 7 8 →= 26 8 3 , 26 10 16 7 10 →= 26 8 9 , 26 10 16 7 12 →= 26 8 11 , 26 10 16 7 14 →= 26 8 13 , 7 10 16 7 8 →= 7 8 3 , 7 10 16 7 10 →= 7 8 9 , 7 10 16 7 12 →= 7 8 11 , 7 10 16 7 14 →= 7 8 13 , 18 10 16 7 8 →= 18 8 3 , 18 10 16 7 10 →= 18 8 9 , 18 10 16 7 12 →= 18 8 11 , 18 10 16 7 14 →= 18 8 13 , 37 10 16 7 8 →= 37 8 3 , 37 10 16 7 10 →= 37 8 9 , 37 10 16 7 12 →= 37 8 11 , 37 10 16 7 14 →= 37 8 13 , 48 10 16 7 8 →= 48 8 3 , 48 10 16 7 10 →= 48 8 9 , 48 10 16 7 12 →= 48 8 11 , 48 10 16 7 14 →= 48 8 13 , 50 10 16 7 8 →= 50 8 3 , 50 10 16 7 10 →= 50 8 9 , 50 10 16 7 12 →= 50 8 11 , 50 10 16 7 14 →= 50 8 13 , 26 10 16 17 17 →= 26 10 16 , 26 10 16 17 7 →= 26 10 18 , 26 10 16 17 20 →= 26 10 19 , 26 10 16 17 22 →= 26 10 21 , 7 10 16 17 17 →= 7 10 16 , 7 10 16 17 7 →= 7 10 18 , 7 10 16 17 20 →= 7 10 19 , 7 10 16 17 22 →= 7 10 21 , 18 10 16 17 17 →= 18 10 16 , 18 10 16 17 7 →= 18 10 18 , 18 10 16 17 20 →= 18 10 19 , 18 10 16 17 22 →= 18 10 21 , 37 10 16 17 17 →= 37 10 16 , 37 10 16 17 7 →= 37 10 18 , 37 10 16 17 20 →= 37 10 19 , 37 10 16 17 22 →= 37 10 21 , 48 10 16 17 17 →= 48 10 16 , 48 10 16 17 7 →= 48 10 18 , 48 10 16 17 20 →= 48 10 19 , 48 10 16 17 22 →= 48 10 21 , 50 10 16 17 17 →= 50 10 16 , 50 10 16 17 7 →= 50 10 18 , 50 10 16 17 20 →= 50 10 19 , 50 10 16 17 22 →= 50 10 21 , 26 10 16 20 25 →= 26 12 24 , 7 10 16 20 25 →= 7 12 24 , 18 10 16 20 25 →= 18 12 24 , 37 10 16 20 25 →= 37 12 24 , 48 10 16 20 25 →= 48 12 24 , 50 10 16 20 25 →= 50 12 24 , 52 43 16 7 8 →= 52 42 3 , 52 43 16 7 10 →= 52 42 9 , 52 43 16 7 12 →= 52 42 11 , 52 43 16 7 14 →= 52 42 13 , 52 43 16 17 17 →= 52 43 16 , 52 43 16 17 7 →= 52 43 18 , 52 43 16 17 20 →= 52 43 19 , 52 43 16 17 22 →= 52 43 21 , 52 43 16 20 25 →= 52 54 24 , 34 37 10 18 8 →= 1 2 9 18 8 , 34 37 10 18 10 →= 1 2 9 18 10 , 34 37 10 18 12 →= 1 2 9 18 12 , 34 37 10 18 14 →= 1 2 9 18 14 , 41 37 10 18 8 →= 40 2 9 18 8 , 41 37 10 18 10 →= 40 2 9 18 10 , 41 37 10 18 12 →= 40 2 9 18 12 , 41 37 10 18 14 →= 40 2 9 18 14 , 34 37 10 16 17 →= 1 2 9 16 17 , 34 37 10 16 7 →= 1 2 9 16 7 , 34 37 10 16 20 →= 1 2 9 16 20 , 34 37 10 16 22 →= 1 2 9 16 22 , 41 37 10 16 17 →= 40 2 9 16 17 , 41 37 10 16 7 →= 40 2 9 16 7 , 41 37 10 16 20 →= 40 2 9 16 20 , 41 37 10 16 22 →= 40 2 9 16 22 , 34 37 10 19 25 →= 1 2 9 19 25 , 41 37 10 19 25 →= 40 2 9 19 25 , 15 18 10 18 8 →= 2 3 9 18 8 , 15 18 10 18 10 →= 2 3 9 18 10 , 15 18 10 18 12 →= 2 3 9 18 12 , 15 18 10 18 14 →= 2 3 9 18 14 , 9 18 10 18 8 →= 3 3 9 18 8 , 9 18 10 18 10 →= 3 3 9 18 10 , 9 18 10 18 12 →= 3 3 9 18 12 , 9 18 10 18 14 →= 3 3 9 18 14 , 10 18 10 18 8 →= 8 3 9 18 8 , 10 18 10 18 10 →= 8 3 9 18 10 , 10 18 10 18 12 →= 8 3 9 18 12 , 10 18 10 18 14 →= 8 3 9 18 14 , 30 18 10 18 8 →= 29 3 9 18 8 , 30 18 10 18 10 →= 29 3 9 18 10 , 30 18 10 18 12 →= 29 3 9 18 12 , 30 18 10 18 14 →= 29 3 9 18 14 , 43 18 10 18 8 →= 42 3 9 18 8 , 43 18 10 18 10 →= 42 3 9 18 10 , 43 18 10 18 12 →= 42 3 9 18 12 , 43 18 10 18 14 →= 42 3 9 18 14 , 45 18 10 18 8 →= 44 3 9 18 8 , 45 18 10 18 10 →= 44 3 9 18 10 , 45 18 10 18 12 →= 44 3 9 18 12 , 45 18 10 18 14 →= 44 3 9 18 14 , 15 18 10 16 17 →= 2 3 9 16 17 , 15 18 10 16 7 →= 2 3 9 16 7 , 15 18 10 16 20 →= 2 3 9 16 20 , 15 18 10 16 22 →= 2 3 9 16 22 , 9 18 10 16 17 →= 3 3 9 16 17 , 9 18 10 16 7 →= 3 3 9 16 7 , 9 18 10 16 20 →= 3 3 9 16 20 , 9 18 10 16 22 →= 3 3 9 16 22 , 10 18 10 16 17 →= 8 3 9 16 17 , 10 18 10 16 7 →= 8 3 9 16 7 , 10 18 10 16 20 →= 8 3 9 16 20 , 10 18 10 16 22 →= 8 3 9 16 22 , 30 18 10 16 17 →= 29 3 9 16 17 , 30 18 10 16 7 →= 29 3 9 16 7 , 30 18 10 16 20 →= 29 3 9 16 20 , 30 18 10 16 22 →= 29 3 9 16 22 , 43 18 10 16 17 →= 42 3 9 16 17 , 43 18 10 16 7 →= 42 3 9 16 7 , 43 18 10 16 20 →= 42 3 9 16 20 , 43 18 10 16 22 →= 42 3 9 16 22 , 45 18 10 16 17 →= 44 3 9 16 17 , 45 18 10 16 7 →= 44 3 9 16 7 , 45 18 10 16 20 →= 44 3 9 16 20 , 45 18 10 16 22 →= 44 3 9 16 22 , 15 18 10 19 25 →= 2 3 9 19 25 , 9 18 10 19 25 →= 3 3 9 19 25 , 10 18 10 19 25 →= 8 3 9 19 25 , 30 18 10 19 25 →= 29 3 9 19 25 , 43 18 10 19 25 →= 42 3 9 19 25 , 45 18 10 19 25 →= 44 3 9 19 25 , 5 26 10 18 8 →= 28 29 9 18 8 , 5 26 10 18 10 →= 28 29 9 18 10 , 5 26 10 18 12 →= 28 29 9 18 12 , 5 26 10 18 14 →= 28 29 9 18 14 , 47 26 10 18 8 →= 46 29 9 18 8 , 47 26 10 18 10 →= 46 29 9 18 10 , 47 26 10 18 12 →= 46 29 9 18 12 , 47 26 10 18 14 →= 46 29 9 18 14 , 5 26 10 16 17 →= 28 29 9 16 17 , 5 26 10 16 7 →= 28 29 9 16 7 , 5 26 10 16 20 →= 28 29 9 16 20 , 5 26 10 16 22 →= 28 29 9 16 22 , 47 26 10 16 17 →= 46 29 9 16 17 , 47 26 10 16 7 →= 46 29 9 16 7 , 47 26 10 16 20 →= 46 29 9 16 20 , 47 26 10 16 22 →= 46 29 9 16 22 , 5 26 10 19 25 →= 28 29 9 19 25 , 47 26 10 19 25 →= 46 29 9 19 25 , 6 7 10 18 8 →= 26 8 9 18 8 , 6 7 10 18 10 →= 26 8 9 18 10 , 6 7 10 18 12 →= 26 8 9 18 12 , 6 7 10 18 14 →= 26 8 9 18 14 , 17 7 10 18 8 →= 7 8 9 18 8 , 17 7 10 18 10 →= 7 8 9 18 10 , 17 7 10 18 12 →= 7 8 9 18 12 , 17 7 10 18 14 →= 7 8 9 18 14 , 16 7 10 18 8 →= 18 8 9 18 8 , 16 7 10 18 10 →= 18 8 9 18 10 , 16 7 10 18 12 →= 18 8 9 18 12 , 16 7 10 18 14 →= 18 8 9 18 14 , 35 7 10 18 8 →= 37 8 9 18 8 , 35 7 10 18 10 →= 37 8 9 18 10 , 35 7 10 18 12 →= 37 8 9 18 12 , 35 7 10 18 14 →= 37 8 9 18 14 , 49 7 10 18 8 →= 48 8 9 18 8 , 49 7 10 18 10 →= 48 8 9 18 10 , 49 7 10 18 12 →= 48 8 9 18 12 , 49 7 10 18 14 →= 48 8 9 18 14 , 51 7 10 18 8 →= 50 8 9 18 8 , 51 7 10 18 10 →= 50 8 9 18 10 , 51 7 10 18 12 →= 50 8 9 18 12 , 51 7 10 18 14 →= 50 8 9 18 14 , 6 7 10 16 17 →= 26 8 9 16 17 , 6 7 10 16 7 →= 26 8 9 16 7 , 6 7 10 16 20 →= 26 8 9 16 20 , 6 7 10 16 22 →= 26 8 9 16 22 , 17 7 10 16 17 →= 7 8 9 16 17 , 17 7 10 16 7 →= 7 8 9 16 7 , 17 7 10 16 20 →= 7 8 9 16 20 , 17 7 10 16 22 →= 7 8 9 16 22 , 16 7 10 16 17 →= 18 8 9 16 17 , 16 7 10 16 7 →= 18 8 9 16 7 , 16 7 10 16 20 →= 18 8 9 16 20 , 16 7 10 16 22 →= 18 8 9 16 22 , 35 7 10 16 17 →= 37 8 9 16 17 , 35 7 10 16 7 →= 37 8 9 16 7 , 35 7 10 16 20 →= 37 8 9 16 20 , 35 7 10 16 22 →= 37 8 9 16 22 , 49 7 10 16 17 →= 48 8 9 16 17 , 49 7 10 16 7 →= 48 8 9 16 7 , 49 7 10 16 20 →= 48 8 9 16 20 , 49 7 10 16 22 →= 48 8 9 16 22 , 51 7 10 16 17 →= 50 8 9 16 17 , 51 7 10 16 7 →= 50 8 9 16 7 , 51 7 10 16 20 →= 50 8 9 16 20 , 51 7 10 16 22 →= 50 8 9 16 22 , 6 7 10 19 25 →= 26 8 9 19 25 , 17 7 10 19 25 →= 7 8 9 19 25 , 16 7 10 19 25 →= 18 8 9 19 25 , 35 7 10 19 25 →= 37 8 9 19 25 , 49 7 10 19 25 →= 48 8 9 19 25 , 51 7 10 19 25 →= 50 8 9 19 25 , 53 48 10 18 8 →= 52 42 9 18 8 , 53 48 10 18 10 →= 52 42 9 18 10 , 53 48 10 18 12 →= 52 42 9 18 12 , 53 48 10 18 14 →= 52 42 9 18 14 , 53 48 10 16 17 →= 52 42 9 16 17 , 53 48 10 16 7 →= 52 42 9 16 7 , 53 48 10 16 20 →= 52 42 9 16 20 , 53 48 10 16 22 →= 52 42 9 16 22 , 53 48 10 19 25 →= 52 42 9 19 25 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 26 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 27 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 28 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 29 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 30 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 31 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 32 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 33 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 34 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 35 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 36 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 37 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 38 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 39 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 40 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 41 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 42 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 43 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 44 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 45 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 46 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 47 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 48 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 49 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 50 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 51 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 52 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 53 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 54 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 34 ↦ 1, 35 ↦ 2, 17 ↦ 3, 8 ↦ 4, 3 ↦ 5, 9 ↦ 6, 10 ↦ 7, 16 ↦ 8, 7 ↦ 9, 1 ↦ 10, 15 ↦ 11, 18 ↦ 12, 40 ↦ 13, 2 ↦ 14, 29 ↦ 15, 42 ↦ 16, 44 ↦ 17, 28 ↦ 18, 30 ↦ 19, 46 ↦ 20, 26 ↦ 21, 37 ↦ 22, 48 ↦ 23, 50 ↦ 24, 52 ↦ 25, 43 ↦ 26, 12 ↦ 27, 14 ↦ 28, 20 ↦ 29, 22 ↦ 30, 19 ↦ 31, 25 ↦ 32 }, it remains to prove termination of the 69-rule system { 0 1 2 3 3 ⟶ 0 1 2 , 4 5 5 6 →= 7 8 3 9 7 , 10 11 8 3 3 →= 10 11 8 , 10 11 8 3 9 →= 10 11 12 , 13 11 8 3 3 →= 13 11 8 , 13 11 8 3 9 →= 13 11 12 , 14 6 8 9 4 →= 14 5 5 , 5 6 8 9 4 →= 5 5 5 , 4 6 8 9 4 →= 4 5 5 , 15 6 8 9 4 →= 15 5 5 , 16 6 8 9 4 →= 16 5 5 , 17 6 8 9 4 →= 17 5 5 , 14 6 8 3 3 →= 14 6 8 , 14 6 8 3 9 →= 14 6 12 , 5 6 8 3 3 →= 5 6 8 , 5 6 8 3 9 →= 5 6 12 , 4 6 8 3 3 →= 4 6 8 , 4 6 8 3 9 →= 4 6 12 , 15 6 8 3 3 →= 15 6 8 , 15 6 8 3 9 →= 15 6 12 , 16 6 8 3 3 →= 16 6 8 , 16 6 8 3 9 →= 16 6 12 , 17 6 8 3 3 →= 17 6 8 , 17 6 8 3 9 →= 17 6 12 , 18 19 8 3 3 →= 18 19 8 , 18 19 8 3 9 →= 18 19 12 , 20 19 8 3 3 →= 20 19 8 , 20 19 8 3 9 →= 20 19 12 , 21 7 8 3 3 →= 21 7 8 , 21 7 8 3 9 →= 21 7 12 , 9 7 8 3 3 →= 9 7 8 , 9 7 8 3 9 →= 9 7 12 , 12 7 8 3 3 →= 12 7 8 , 12 7 8 3 9 →= 12 7 12 , 22 7 8 3 3 →= 22 7 8 , 22 7 8 3 9 →= 22 7 12 , 23 7 8 3 3 →= 23 7 8 , 23 7 8 3 9 →= 23 7 12 , 24 7 8 3 3 →= 24 7 8 , 24 7 8 3 9 →= 24 7 12 , 25 26 8 3 3 →= 25 26 8 , 25 26 8 3 9 →= 25 26 12 , 6 12 7 12 4 →= 5 5 6 12 4 , 6 12 7 12 7 →= 5 5 6 12 7 , 6 12 7 12 27 →= 5 5 6 12 27 , 6 12 7 12 28 →= 5 5 6 12 28 , 6 12 7 8 3 →= 5 5 6 8 3 , 6 12 7 8 9 →= 5 5 6 8 9 , 6 12 7 8 29 →= 5 5 6 8 29 , 6 12 7 8 30 →= 5 5 6 8 30 , 6 12 7 31 32 →= 5 5 6 31 32 , 3 9 7 12 4 →= 9 4 6 12 4 , 3 9 7 12 7 →= 9 4 6 12 7 , 3 9 7 12 27 →= 9 4 6 12 27 , 3 9 7 12 28 →= 9 4 6 12 28 , 8 9 7 12 4 →= 12 4 6 12 4 , 8 9 7 12 7 →= 12 4 6 12 7 , 8 9 7 12 27 →= 12 4 6 12 27 , 8 9 7 12 28 →= 12 4 6 12 28 , 3 9 7 8 3 →= 9 4 6 8 3 , 3 9 7 8 9 →= 9 4 6 8 9 , 3 9 7 8 29 →= 9 4 6 8 29 , 3 9 7 8 30 →= 9 4 6 8 30 , 8 9 7 8 3 →= 12 4 6 8 3 , 8 9 7 8 9 →= 12 4 6 8 9 , 8 9 7 8 29 →= 12 4 6 8 29 , 8 9 7 8 30 →= 12 4 6 8 30 , 3 9 7 31 32 →= 9 4 6 31 32 , 8 9 7 31 32 →= 12 4 6 31 32 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 1 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 26 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 27 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 28 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 29 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 30 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 31 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 32 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 5 ↦ 1, 6 ↦ 2, 7 ↦ 3, 8 ↦ 4, 3 ↦ 5, 9 ↦ 6, 10 ↦ 7, 11 ↦ 8, 12 ↦ 9, 13 ↦ 10, 14 ↦ 11, 15 ↦ 12, 16 ↦ 13, 17 ↦ 14, 18 ↦ 15, 19 ↦ 16, 20 ↦ 17, 21 ↦ 18, 22 ↦ 19, 23 ↦ 20, 24 ↦ 21, 25 ↦ 22, 26 ↦ 23, 27 ↦ 24, 28 ↦ 25, 29 ↦ 26, 30 ↦ 27, 31 ↦ 28, 32 ↦ 29 }, it remains to prove termination of the 68-rule system { 0 1 1 2 →= 3 4 5 6 3 , 7 8 4 5 5 →= 7 8 4 , 7 8 4 5 6 →= 7 8 9 , 10 8 4 5 5 →= 10 8 4 , 10 8 4 5 6 →= 10 8 9 , 11 2 4 6 0 →= 11 1 1 , 1 2 4 6 0 →= 1 1 1 , 0 2 4 6 0 →= 0 1 1 , 12 2 4 6 0 →= 12 1 1 , 13 2 4 6 0 →= 13 1 1 , 14 2 4 6 0 →= 14 1 1 , 11 2 4 5 5 →= 11 2 4 , 11 2 4 5 6 →= 11 2 9 , 1 2 4 5 5 →= 1 2 4 , 1 2 4 5 6 →= 1 2 9 , 0 2 4 5 5 →= 0 2 4 , 0 2 4 5 6 →= 0 2 9 , 12 2 4 5 5 →= 12 2 4 , 12 2 4 5 6 →= 12 2 9 , 13 2 4 5 5 →= 13 2 4 , 13 2 4 5 6 →= 13 2 9 , 14 2 4 5 5 →= 14 2 4 , 14 2 4 5 6 →= 14 2 9 , 15 16 4 5 5 →= 15 16 4 , 15 16 4 5 6 →= 15 16 9 , 17 16 4 5 5 →= 17 16 4 , 17 16 4 5 6 →= 17 16 9 , 18 3 4 5 5 →= 18 3 4 , 18 3 4 5 6 →= 18 3 9 , 6 3 4 5 5 →= 6 3 4 , 6 3 4 5 6 →= 6 3 9 , 9 3 4 5 5 →= 9 3 4 , 9 3 4 5 6 →= 9 3 9 , 19 3 4 5 5 →= 19 3 4 , 19 3 4 5 6 →= 19 3 9 , 20 3 4 5 5 →= 20 3 4 , 20 3 4 5 6 →= 20 3 9 , 21 3 4 5 5 →= 21 3 4 , 21 3 4 5 6 →= 21 3 9 , 22 23 4 5 5 →= 22 23 4 , 22 23 4 5 6 →= 22 23 9 , 2 9 3 9 0 →= 1 1 2 9 0 , 2 9 3 9 3 →= 1 1 2 9 3 , 2 9 3 9 24 →= 1 1 2 9 24 , 2 9 3 9 25 →= 1 1 2 9 25 , 2 9 3 4 5 →= 1 1 2 4 5 , 2 9 3 4 6 →= 1 1 2 4 6 , 2 9 3 4 26 →= 1 1 2 4 26 , 2 9 3 4 27 →= 1 1 2 4 27 , 2 9 3 28 29 →= 1 1 2 28 29 , 5 6 3 9 0 →= 6 0 2 9 0 , 5 6 3 9 3 →= 6 0 2 9 3 , 5 6 3 9 24 →= 6 0 2 9 24 , 5 6 3 9 25 →= 6 0 2 9 25 , 4 6 3 9 0 →= 9 0 2 9 0 , 4 6 3 9 3 →= 9 0 2 9 3 , 4 6 3 9 24 →= 9 0 2 9 24 , 4 6 3 9 25 →= 9 0 2 9 25 , 5 6 3 4 5 →= 6 0 2 4 5 , 5 6 3 4 6 →= 6 0 2 4 6 , 5 6 3 4 26 →= 6 0 2 4 26 , 5 6 3 4 27 →= 6 0 2 4 27 , 4 6 3 4 5 →= 9 0 2 4 5 , 4 6 3 4 6 →= 9 0 2 4 6 , 4 6 3 4 26 →= 9 0 2 4 26 , 4 6 3 4 27 →= 9 0 2 4 27 , 5 6 3 28 29 →= 6 0 2 28 29 , 4 6 3 28 29 →= 9 0 2 28 29 } The system is trivially terminating.