/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1 }, it remains to prove termination of the 3-rule system { 0 1 1 ⟶ 0 , 0 0 ⟶ 1 1 1 , 1 1 0 ⟶ 0 1 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (0,↓) ↦ 2, (1,↑) ↦ 3 }, it remains to prove termination of the 8-rule system { 0 1 1 ⟶ 0 , 0 2 ⟶ 3 1 1 , 0 2 ⟶ 3 1 , 0 2 ⟶ 3 , 3 1 2 ⟶ 0 1 2 , 2 1 1 →= 2 , 2 2 →= 1 1 1 , 1 1 2 →= 2 1 2 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (1,2) ↦ 3, (0,2) ↦ 4, (1,5) ↦ 5, (0,5) ↦ 6, (2,1) ↦ 7, (4,3) ↦ 8, (3,1) ↦ 9, (2,2) ↦ 10, (2,5) ↦ 11, (3,2) ↦ 12, (3,5) ↦ 13, (4,2) ↦ 14, (4,1) ↦ 15 }, it remains to prove termination of the 60-rule system { 0 1 2 2 ⟶ 0 1 , 0 1 2 3 ⟶ 0 4 , 0 1 2 5 ⟶ 0 6 , 0 4 7 ⟶ 8 9 2 2 , 0 4 10 ⟶ 8 9 2 3 , 0 4 11 ⟶ 8 9 2 5 , 0 4 7 ⟶ 8 9 2 , 0 4 10 ⟶ 8 9 3 , 0 4 11 ⟶ 8 9 5 , 0 4 7 ⟶ 8 9 , 0 4 10 ⟶ 8 12 , 0 4 11 ⟶ 8 13 , 8 9 3 7 ⟶ 0 1 3 7 , 8 9 3 10 ⟶ 0 1 3 10 , 8 9 3 11 ⟶ 0 1 3 11 , 4 7 2 2 →= 4 7 , 4 7 2 3 →= 4 10 , 4 7 2 5 →= 4 11 , 3 7 2 2 →= 3 7 , 3 7 2 3 →= 3 10 , 3 7 2 5 →= 3 11 , 10 7 2 2 →= 10 7 , 10 7 2 3 →= 10 10 , 10 7 2 5 →= 10 11 , 12 7 2 2 →= 12 7 , 12 7 2 3 →= 12 10 , 12 7 2 5 →= 12 11 , 14 7 2 2 →= 14 7 , 14 7 2 3 →= 14 10 , 14 7 2 5 →= 14 11 , 4 10 7 →= 1 2 2 2 , 4 10 10 →= 1 2 2 3 , 4 10 11 →= 1 2 2 5 , 3 10 7 →= 2 2 2 2 , 3 10 10 →= 2 2 2 3 , 3 10 11 →= 2 2 2 5 , 10 10 7 →= 7 2 2 2 , 10 10 10 →= 7 2 2 3 , 10 10 11 →= 7 2 2 5 , 12 10 7 →= 9 2 2 2 , 12 10 10 →= 9 2 2 3 , 12 10 11 →= 9 2 2 5 , 14 10 7 →= 15 2 2 2 , 14 10 10 →= 15 2 2 3 , 14 10 11 →= 15 2 2 5 , 1 2 3 7 →= 4 7 3 7 , 1 2 3 10 →= 4 7 3 10 , 1 2 3 11 →= 4 7 3 11 , 2 2 3 7 →= 3 7 3 7 , 2 2 3 10 →= 3 7 3 10 , 2 2 3 11 →= 3 7 3 11 , 7 2 3 7 →= 10 7 3 7 , 7 2 3 10 →= 10 7 3 10 , 7 2 3 11 →= 10 7 3 11 , 9 2 3 7 →= 12 7 3 7 , 9 2 3 10 →= 12 7 3 10 , 9 2 3 11 →= 12 7 3 11 , 15 2 3 7 →= 14 7 3 7 , 15 2 3 10 →= 14 7 3 10 , 15 2 3 11 →= 14 7 3 11 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 7 ↦ 5, 8 ↦ 6, 9 ↦ 7, 10 ↦ 8, 11 ↦ 9, 5 ↦ 10, 12 ↦ 11, 14 ↦ 12, 15 ↦ 13 }, it remains to prove termination of the 58-rule system { 0 1 2 2 ⟶ 0 1 , 0 1 2 3 ⟶ 0 4 , 0 4 5 ⟶ 6 7 2 2 , 0 4 8 ⟶ 6 7 2 3 , 0 4 9 ⟶ 6 7 2 10 , 0 4 5 ⟶ 6 7 2 , 0 4 8 ⟶ 6 7 3 , 0 4 9 ⟶ 6 7 10 , 0 4 5 ⟶ 6 7 , 0 4 8 ⟶ 6 11 , 6 7 3 5 ⟶ 0 1 3 5 , 6 7 3 8 ⟶ 0 1 3 8 , 6 7 3 9 ⟶ 0 1 3 9 , 4 5 2 2 →= 4 5 , 4 5 2 3 →= 4 8 , 4 5 2 10 →= 4 9 , 3 5 2 2 →= 3 5 , 3 5 2 3 →= 3 8 , 3 5 2 10 →= 3 9 , 8 5 2 2 →= 8 5 , 8 5 2 3 →= 8 8 , 8 5 2 10 →= 8 9 , 11 5 2 2 →= 11 5 , 11 5 2 3 →= 11 8 , 11 5 2 10 →= 11 9 , 12 5 2 2 →= 12 5 , 12 5 2 3 →= 12 8 , 12 5 2 10 →= 12 9 , 4 8 5 →= 1 2 2 2 , 4 8 8 →= 1 2 2 3 , 4 8 9 →= 1 2 2 10 , 3 8 5 →= 2 2 2 2 , 3 8 8 →= 2 2 2 3 , 3 8 9 →= 2 2 2 10 , 8 8 5 →= 5 2 2 2 , 8 8 8 →= 5 2 2 3 , 8 8 9 →= 5 2 2 10 , 11 8 5 →= 7 2 2 2 , 11 8 8 →= 7 2 2 3 , 11 8 9 →= 7 2 2 10 , 12 8 5 →= 13 2 2 2 , 12 8 8 →= 13 2 2 3 , 12 8 9 →= 13 2 2 10 , 1 2 3 5 →= 4 5 3 5 , 1 2 3 8 →= 4 5 3 8 , 1 2 3 9 →= 4 5 3 9 , 2 2 3 5 →= 3 5 3 5 , 2 2 3 8 →= 3 5 3 8 , 2 2 3 9 →= 3 5 3 9 , 5 2 3 5 →= 8 5 3 5 , 5 2 3 8 →= 8 5 3 8 , 5 2 3 9 →= 8 5 3 9 , 7 2 3 5 →= 11 5 3 5 , 7 2 3 8 →= 11 5 3 8 , 7 2 3 9 →= 11 5 3 9 , 13 2 3 5 →= 12 5 3 5 , 13 2 3 8 →= 12 5 3 8 , 13 2 3 9 →= 12 5 3 9 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (14,0) ↦ 0, (0,1) ↦ 1, (1,2) ↦ 2, (2,2) ↦ 3, (2,3) ↦ 4, (1,3) ↦ 5, (2,10) ↦ 6, (1,10) ↦ 7, (2,15) ↦ 8, (1,15) ↦ 9, (3,5) ↦ 10, (0,4) ↦ 11, (4,5) ↦ 12, (3,8) ↦ 13, (4,8) ↦ 14, (3,9) ↦ 15, (4,9) ↦ 16, (3,15) ↦ 17, (4,15) ↦ 18, (5,2) ↦ 19, (14,6) ↦ 20, (6,7) ↦ 21, (7,2) ↦ 22, (5,3) ↦ 23, (5,10) ↦ 24, (5,15) ↦ 25, (8,5) ↦ 26, (8,8) ↦ 27, (8,9) ↦ 28, (8,15) ↦ 29, (9,15) ↦ 30, (10,15) ↦ 31, (7,3) ↦ 32, (7,10) ↦ 33, (7,15) ↦ 34, (6,11) ↦ 35, (11,5) ↦ 36, (11,8) ↦ 37, (11,9) ↦ 38, (11,15) ↦ 39, (14,4) ↦ 40, (13,3) ↦ 41, (14,3) ↦ 42, (12,8) ↦ 43, (14,8) ↦ 44, (14,11) ↦ 45, (14,12) ↦ 46, (12,5) ↦ 47, (12,9) ↦ 48, (14,1) ↦ 49, (13,2) ↦ 50, (14,2) ↦ 51, (14,5) ↦ 52, (14,7) ↦ 53, (14,13) ↦ 54 }, it remains to prove termination of the 502-rule system { 0 1 2 3 3 ⟶ 0 1 2 , 0 1 2 3 4 ⟶ 0 1 5 , 0 1 2 3 6 ⟶ 0 1 7 , 0 1 2 3 8 ⟶ 0 1 9 , 0 1 2 4 10 ⟶ 0 11 12 , 0 1 2 4 13 ⟶ 0 11 14 , 0 1 2 4 15 ⟶ 0 11 16 , 0 1 2 4 17 ⟶ 0 11 18 , 0 11 12 19 ⟶ 20 21 22 3 3 , 0 11 12 23 ⟶ 20 21 22 3 4 , 0 11 12 24 ⟶ 20 21 22 3 6 , 0 11 12 25 ⟶ 20 21 22 3 8 , 0 11 14 26 ⟶ 20 21 22 4 10 , 0 11 14 27 ⟶ 20 21 22 4 13 , 0 11 14 28 ⟶ 20 21 22 4 15 , 0 11 14 29 ⟶ 20 21 22 4 17 , 0 11 16 30 ⟶ 20 21 22 6 31 , 0 11 12 19 ⟶ 20 21 22 3 , 0 11 12 23 ⟶ 20 21 22 4 , 0 11 12 24 ⟶ 20 21 22 6 , 0 11 12 25 ⟶ 20 21 22 8 , 0 11 14 26 ⟶ 20 21 32 10 , 0 11 14 27 ⟶ 20 21 32 13 , 0 11 14 28 ⟶ 20 21 32 15 , 0 11 14 29 ⟶ 20 21 32 17 , 0 11 16 30 ⟶ 20 21 33 31 , 0 11 12 19 ⟶ 20 21 22 , 0 11 12 23 ⟶ 20 21 32 , 0 11 12 24 ⟶ 20 21 33 , 0 11 12 25 ⟶ 20 21 34 , 0 11 14 26 ⟶ 20 35 36 , 0 11 14 27 ⟶ 20 35 37 , 0 11 14 28 ⟶ 20 35 38 , 0 11 14 29 ⟶ 20 35 39 , 20 21 32 10 19 ⟶ 0 1 5 10 19 , 20 21 32 10 23 ⟶ 0 1 5 10 23 , 20 21 32 10 24 ⟶ 0 1 5 10 24 , 20 21 32 10 25 ⟶ 0 1 5 10 25 , 20 21 32 13 26 ⟶ 0 1 5 13 26 , 20 21 32 13 27 ⟶ 0 1 5 13 27 , 20 21 32 13 28 ⟶ 0 1 5 13 28 , 20 21 32 13 29 ⟶ 0 1 5 13 29 , 20 21 32 15 30 ⟶ 0 1 5 15 30 , 11 12 19 3 3 →= 11 12 19 , 11 12 19 3 4 →= 11 12 23 , 11 12 19 3 6 →= 11 12 24 , 11 12 19 3 8 →= 11 12 25 , 40 12 19 3 3 →= 40 12 19 , 40 12 19 3 4 →= 40 12 23 , 40 12 19 3 6 →= 40 12 24 , 40 12 19 3 8 →= 40 12 25 , 11 12 19 4 10 →= 11 14 26 , 11 12 19 4 13 →= 11 14 27 , 11 12 19 4 15 →= 11 14 28 , 11 12 19 4 17 →= 11 14 29 , 40 12 19 4 10 →= 40 14 26 , 40 12 19 4 13 →= 40 14 27 , 40 12 19 4 15 →= 40 14 28 , 40 12 19 4 17 →= 40 14 29 , 11 12 19 6 31 →= 11 16 30 , 40 12 19 6 31 →= 40 16 30 , 5 10 19 3 3 →= 5 10 19 , 5 10 19 3 4 →= 5 10 23 , 5 10 19 3 6 →= 5 10 24 , 5 10 19 3 8 →= 5 10 25 , 4 10 19 3 3 →= 4 10 19 , 4 10 19 3 4 →= 4 10 23 , 4 10 19 3 6 →= 4 10 24 , 4 10 19 3 8 →= 4 10 25 , 23 10 19 3 3 →= 23 10 19 , 23 10 19 3 4 →= 23 10 23 , 23 10 19 3 6 →= 23 10 24 , 23 10 19 3 8 →= 23 10 25 , 32 10 19 3 3 →= 32 10 19 , 32 10 19 3 4 →= 32 10 23 , 32 10 19 3 6 →= 32 10 24 , 32 10 19 3 8 →= 32 10 25 , 41 10 19 3 3 →= 41 10 19 , 41 10 19 3 4 →= 41 10 23 , 41 10 19 3 6 →= 41 10 24 , 41 10 19 3 8 →= 41 10 25 , 42 10 19 3 3 →= 42 10 19 , 42 10 19 3 4 →= 42 10 23 , 42 10 19 3 6 →= 42 10 24 , 42 10 19 3 8 →= 42 10 25 , 5 10 19 4 10 →= 5 13 26 , 5 10 19 4 13 →= 5 13 27 , 5 10 19 4 15 →= 5 13 28 , 5 10 19 4 17 →= 5 13 29 , 4 10 19 4 10 →= 4 13 26 , 4 10 19 4 13 →= 4 13 27 , 4 10 19 4 15 →= 4 13 28 , 4 10 19 4 17 →= 4 13 29 , 23 10 19 4 10 →= 23 13 26 , 23 10 19 4 13 →= 23 13 27 , 23 10 19 4 15 →= 23 13 28 , 23 10 19 4 17 →= 23 13 29 , 32 10 19 4 10 →= 32 13 26 , 32 10 19 4 13 →= 32 13 27 , 32 10 19 4 15 →= 32 13 28 , 32 10 19 4 17 →= 32 13 29 , 41 10 19 4 10 →= 41 13 26 , 41 10 19 4 13 →= 41 13 27 , 41 10 19 4 15 →= 41 13 28 , 41 10 19 4 17 →= 41 13 29 , 42 10 19 4 10 →= 42 13 26 , 42 10 19 4 13 →= 42 13 27 , 42 10 19 4 15 →= 42 13 28 , 42 10 19 4 17 →= 42 13 29 , 5 10 19 6 31 →= 5 15 30 , 4 10 19 6 31 →= 4 15 30 , 23 10 19 6 31 →= 23 15 30 , 32 10 19 6 31 →= 32 15 30 , 41 10 19 6 31 →= 41 15 30 , 42 10 19 6 31 →= 42 15 30 , 13 26 19 3 3 →= 13 26 19 , 13 26 19 3 4 →= 13 26 23 , 13 26 19 3 6 →= 13 26 24 , 13 26 19 3 8 →= 13 26 25 , 14 26 19 3 3 →= 14 26 19 , 14 26 19 3 4 →= 14 26 23 , 14 26 19 3 6 →= 14 26 24 , 14 26 19 3 8 →= 14 26 25 , 27 26 19 3 3 →= 27 26 19 , 27 26 19 3 4 →= 27 26 23 , 27 26 19 3 6 →= 27 26 24 , 27 26 19 3 8 →= 27 26 25 , 37 26 19 3 3 →= 37 26 19 , 37 26 19 3 4 →= 37 26 23 , 37 26 19 3 6 →= 37 26 24 , 37 26 19 3 8 →= 37 26 25 , 43 26 19 3 3 →= 43 26 19 , 43 26 19 3 4 →= 43 26 23 , 43 26 19 3 6 →= 43 26 24 , 43 26 19 3 8 →= 43 26 25 , 44 26 19 3 3 →= 44 26 19 , 44 26 19 3 4 →= 44 26 23 , 44 26 19 3 6 →= 44 26 24 , 44 26 19 3 8 →= 44 26 25 , 13 26 19 4 10 →= 13 27 26 , 13 26 19 4 13 →= 13 27 27 , 13 26 19 4 15 →= 13 27 28 , 13 26 19 4 17 →= 13 27 29 , 14 26 19 4 10 →= 14 27 26 , 14 26 19 4 13 →= 14 27 27 , 14 26 19 4 15 →= 14 27 28 , 14 26 19 4 17 →= 14 27 29 , 27 26 19 4 10 →= 27 27 26 , 27 26 19 4 13 →= 27 27 27 , 27 26 19 4 15 →= 27 27 28 , 27 26 19 4 17 →= 27 27 29 , 37 26 19 4 10 →= 37 27 26 , 37 26 19 4 13 →= 37 27 27 , 37 26 19 4 15 →= 37 27 28 , 37 26 19 4 17 →= 37 27 29 , 43 26 19 4 10 →= 43 27 26 , 43 26 19 4 13 →= 43 27 27 , 43 26 19 4 15 →= 43 27 28 , 43 26 19 4 17 →= 43 27 29 , 44 26 19 4 10 →= 44 27 26 , 44 26 19 4 13 →= 44 27 27 , 44 26 19 4 15 →= 44 27 28 , 44 26 19 4 17 →= 44 27 29 , 13 26 19 6 31 →= 13 28 30 , 14 26 19 6 31 →= 14 28 30 , 27 26 19 6 31 →= 27 28 30 , 37 26 19 6 31 →= 37 28 30 , 43 26 19 6 31 →= 43 28 30 , 44 26 19 6 31 →= 44 28 30 , 35 36 19 3 3 →= 35 36 19 , 35 36 19 3 4 →= 35 36 23 , 35 36 19 3 6 →= 35 36 24 , 35 36 19 3 8 →= 35 36 25 , 45 36 19 3 3 →= 45 36 19 , 45 36 19 3 4 →= 45 36 23 , 45 36 19 3 6 →= 45 36 24 , 45 36 19 3 8 →= 45 36 25 , 35 36 19 4 10 →= 35 37 26 , 35 36 19 4 13 →= 35 37 27 , 35 36 19 4 15 →= 35 37 28 , 35 36 19 4 17 →= 35 37 29 , 45 36 19 4 10 →= 45 37 26 , 45 36 19 4 13 →= 45 37 27 , 45 36 19 4 15 →= 45 37 28 , 45 36 19 4 17 →= 45 37 29 , 35 36 19 6 31 →= 35 38 30 , 45 36 19 6 31 →= 45 38 30 , 46 47 19 3 3 →= 46 47 19 , 46 47 19 3 4 →= 46 47 23 , 46 47 19 3 6 →= 46 47 24 , 46 47 19 3 8 →= 46 47 25 , 46 47 19 4 10 →= 46 43 26 , 46 47 19 4 13 →= 46 43 27 , 46 47 19 4 15 →= 46 43 28 , 46 47 19 4 17 →= 46 43 29 , 46 47 19 6 31 →= 46 48 30 , 11 14 26 19 →= 1 2 3 3 3 , 11 14 26 23 →= 1 2 3 3 4 , 11 14 26 24 →= 1 2 3 3 6 , 11 14 26 25 →= 1 2 3 3 8 , 40 14 26 19 →= 49 2 3 3 3 , 40 14 26 23 →= 49 2 3 3 4 , 40 14 26 24 →= 49 2 3 3 6 , 40 14 26 25 →= 49 2 3 3 8 , 11 14 27 26 →= 1 2 3 4 10 , 11 14 27 27 →= 1 2 3 4 13 , 11 14 27 28 →= 1 2 3 4 15 , 11 14 27 29 →= 1 2 3 4 17 , 40 14 27 26 →= 49 2 3 4 10 , 40 14 27 27 →= 49 2 3 4 13 , 40 14 27 28 →= 49 2 3 4 15 , 40 14 27 29 →= 49 2 3 4 17 , 11 14 28 30 →= 1 2 3 6 31 , 40 14 28 30 →= 49 2 3 6 31 , 5 13 26 19 →= 2 3 3 3 3 , 5 13 26 23 →= 2 3 3 3 4 , 5 13 26 24 →= 2 3 3 3 6 , 5 13 26 25 →= 2 3 3 3 8 , 4 13 26 19 →= 3 3 3 3 3 , 4 13 26 23 →= 3 3 3 3 4 , 4 13 26 24 →= 3 3 3 3 6 , 4 13 26 25 →= 3 3 3 3 8 , 23 13 26 19 →= 19 3 3 3 3 , 23 13 26 23 →= 19 3 3 3 4 , 23 13 26 24 →= 19 3 3 3 6 , 23 13 26 25 →= 19 3 3 3 8 , 32 13 26 19 →= 22 3 3 3 3 , 32 13 26 23 →= 22 3 3 3 4 , 32 13 26 24 →= 22 3 3 3 6 , 32 13 26 25 →= 22 3 3 3 8 , 41 13 26 19 →= 50 3 3 3 3 , 41 13 26 23 →= 50 3 3 3 4 , 41 13 26 24 →= 50 3 3 3 6 , 41 13 26 25 →= 50 3 3 3 8 , 42 13 26 19 →= 51 3 3 3 3 , 42 13 26 23 →= 51 3 3 3 4 , 42 13 26 24 →= 51 3 3 3 6 , 42 13 26 25 →= 51 3 3 3 8 , 5 13 27 26 →= 2 3 3 4 10 , 5 13 27 27 →= 2 3 3 4 13 , 5 13 27 28 →= 2 3 3 4 15 , 5 13 27 29 →= 2 3 3 4 17 , 4 13 27 26 →= 3 3 3 4 10 , 4 13 27 27 →= 3 3 3 4 13 , 4 13 27 28 →= 3 3 3 4 15 , 4 13 27 29 →= 3 3 3 4 17 , 23 13 27 26 →= 19 3 3 4 10 , 23 13 27 27 →= 19 3 3 4 13 , 23 13 27 28 →= 19 3 3 4 15 , 23 13 27 29 →= 19 3 3 4 17 , 32 13 27 26 →= 22 3 3 4 10 , 32 13 27 27 →= 22 3 3 4 13 , 32 13 27 28 →= 22 3 3 4 15 , 32 13 27 29 →= 22 3 3 4 17 , 41 13 27 26 →= 50 3 3 4 10 , 41 13 27 27 →= 50 3 3 4 13 , 41 13 27 28 →= 50 3 3 4 15 , 41 13 27 29 →= 50 3 3 4 17 , 42 13 27 26 →= 51 3 3 4 10 , 42 13 27 27 →= 51 3 3 4 13 , 42 13 27 28 →= 51 3 3 4 15 , 42 13 27 29 →= 51 3 3 4 17 , 5 13 28 30 →= 2 3 3 6 31 , 4 13 28 30 →= 3 3 3 6 31 , 23 13 28 30 →= 19 3 3 6 31 , 32 13 28 30 →= 22 3 3 6 31 , 41 13 28 30 →= 50 3 3 6 31 , 42 13 28 30 →= 51 3 3 6 31 , 13 27 26 19 →= 10 19 3 3 3 , 13 27 26 23 →= 10 19 3 3 4 , 13 27 26 24 →= 10 19 3 3 6 , 13 27 26 25 →= 10 19 3 3 8 , 14 27 26 19 →= 12 19 3 3 3 , 14 27 26 23 →= 12 19 3 3 4 , 14 27 26 24 →= 12 19 3 3 6 , 14 27 26 25 →= 12 19 3 3 8 , 27 27 26 19 →= 26 19 3 3 3 , 27 27 26 23 →= 26 19 3 3 4 , 27 27 26 24 →= 26 19 3 3 6 , 27 27 26 25 →= 26 19 3 3 8 , 37 27 26 19 →= 36 19 3 3 3 , 37 27 26 23 →= 36 19 3 3 4 , 37 27 26 24 →= 36 19 3 3 6 , 37 27 26 25 →= 36 19 3 3 8 , 43 27 26 19 →= 47 19 3 3 3 , 43 27 26 23 →= 47 19 3 3 4 , 43 27 26 24 →= 47 19 3 3 6 , 43 27 26 25 →= 47 19 3 3 8 , 44 27 26 19 →= 52 19 3 3 3 , 44 27 26 23 →= 52 19 3 3 4 , 44 27 26 24 →= 52 19 3 3 6 , 44 27 26 25 →= 52 19 3 3 8 , 13 27 27 26 →= 10 19 3 4 10 , 13 27 27 27 →= 10 19 3 4 13 , 13 27 27 28 →= 10 19 3 4 15 , 13 27 27 29 →= 10 19 3 4 17 , 14 27 27 26 →= 12 19 3 4 10 , 14 27 27 27 →= 12 19 3 4 13 , 14 27 27 28 →= 12 19 3 4 15 , 14 27 27 29 →= 12 19 3 4 17 , 27 27 27 26 →= 26 19 3 4 10 , 27 27 27 27 →= 26 19 3 4 13 , 27 27 27 28 →= 26 19 3 4 15 , 27 27 27 29 →= 26 19 3 4 17 , 37 27 27 26 →= 36 19 3 4 10 , 37 27 27 27 →= 36 19 3 4 13 , 37 27 27 28 →= 36 19 3 4 15 , 37 27 27 29 →= 36 19 3 4 17 , 43 27 27 26 →= 47 19 3 4 10 , 43 27 27 27 →= 47 19 3 4 13 , 43 27 27 28 →= 47 19 3 4 15 , 43 27 27 29 →= 47 19 3 4 17 , 44 27 27 26 →= 52 19 3 4 10 , 44 27 27 27 →= 52 19 3 4 13 , 44 27 27 28 →= 52 19 3 4 15 , 44 27 27 29 →= 52 19 3 4 17 , 13 27 28 30 →= 10 19 3 6 31 , 14 27 28 30 →= 12 19 3 6 31 , 27 27 28 30 →= 26 19 3 6 31 , 37 27 28 30 →= 36 19 3 6 31 , 43 27 28 30 →= 47 19 3 6 31 , 44 27 28 30 →= 52 19 3 6 31 , 35 37 26 19 →= 21 22 3 3 3 , 35 37 26 23 →= 21 22 3 3 4 , 35 37 26 24 →= 21 22 3 3 6 , 35 37 26 25 →= 21 22 3 3 8 , 45 37 26 19 →= 53 22 3 3 3 , 45 37 26 23 →= 53 22 3 3 4 , 45 37 26 24 →= 53 22 3 3 6 , 45 37 26 25 →= 53 22 3 3 8 , 35 37 27 26 →= 21 22 3 4 10 , 35 37 27 27 →= 21 22 3 4 13 , 35 37 27 28 →= 21 22 3 4 15 , 35 37 27 29 →= 21 22 3 4 17 , 45 37 27 26 →= 53 22 3 4 10 , 45 37 27 27 →= 53 22 3 4 13 , 45 37 27 28 →= 53 22 3 4 15 , 45 37 27 29 →= 53 22 3 4 17 , 35 37 28 30 →= 21 22 3 6 31 , 45 37 28 30 →= 53 22 3 6 31 , 46 43 26 19 →= 54 50 3 3 3 , 46 43 26 23 →= 54 50 3 3 4 , 46 43 26 24 →= 54 50 3 3 6 , 46 43 26 25 →= 54 50 3 3 8 , 46 43 27 26 →= 54 50 3 4 10 , 46 43 27 27 →= 54 50 3 4 13 , 46 43 27 28 →= 54 50 3 4 15 , 46 43 27 29 →= 54 50 3 4 17 , 46 43 28 30 →= 54 50 3 6 31 , 1 2 4 10 19 →= 11 12 23 10 19 , 1 2 4 10 23 →= 11 12 23 10 23 , 1 2 4 10 24 →= 11 12 23 10 24 , 1 2 4 10 25 →= 11 12 23 10 25 , 49 2 4 10 19 →= 40 12 23 10 19 , 49 2 4 10 23 →= 40 12 23 10 23 , 49 2 4 10 24 →= 40 12 23 10 24 , 49 2 4 10 25 →= 40 12 23 10 25 , 1 2 4 13 26 →= 11 12 23 13 26 , 1 2 4 13 27 →= 11 12 23 13 27 , 1 2 4 13 28 →= 11 12 23 13 28 , 1 2 4 13 29 →= 11 12 23 13 29 , 49 2 4 13 26 →= 40 12 23 13 26 , 49 2 4 13 27 →= 40 12 23 13 27 , 49 2 4 13 28 →= 40 12 23 13 28 , 49 2 4 13 29 →= 40 12 23 13 29 , 1 2 4 15 30 →= 11 12 23 15 30 , 49 2 4 15 30 →= 40 12 23 15 30 , 2 3 4 10 19 →= 5 10 23 10 19 , 2 3 4 10 23 →= 5 10 23 10 23 , 2 3 4 10 24 →= 5 10 23 10 24 , 2 3 4 10 25 →= 5 10 23 10 25 , 3 3 4 10 19 →= 4 10 23 10 19 , 3 3 4 10 23 →= 4 10 23 10 23 , 3 3 4 10 24 →= 4 10 23 10 24 , 3 3 4 10 25 →= 4 10 23 10 25 , 19 3 4 10 19 →= 23 10 23 10 19 , 19 3 4 10 23 →= 23 10 23 10 23 , 19 3 4 10 24 →= 23 10 23 10 24 , 19 3 4 10 25 →= 23 10 23 10 25 , 22 3 4 10 19 →= 32 10 23 10 19 , 22 3 4 10 23 →= 32 10 23 10 23 , 22 3 4 10 24 →= 32 10 23 10 24 , 22 3 4 10 25 →= 32 10 23 10 25 , 50 3 4 10 19 →= 41 10 23 10 19 , 50 3 4 10 23 →= 41 10 23 10 23 , 50 3 4 10 24 →= 41 10 23 10 24 , 50 3 4 10 25 →= 41 10 23 10 25 , 51 3 4 10 19 →= 42 10 23 10 19 , 51 3 4 10 23 →= 42 10 23 10 23 , 51 3 4 10 24 →= 42 10 23 10 24 , 51 3 4 10 25 →= 42 10 23 10 25 , 2 3 4 13 26 →= 5 10 23 13 26 , 2 3 4 13 27 →= 5 10 23 13 27 , 2 3 4 13 28 →= 5 10 23 13 28 , 2 3 4 13 29 →= 5 10 23 13 29 , 3 3 4 13 26 →= 4 10 23 13 26 , 3 3 4 13 27 →= 4 10 23 13 27 , 3 3 4 13 28 →= 4 10 23 13 28 , 3 3 4 13 29 →= 4 10 23 13 29 , 19 3 4 13 26 →= 23 10 23 13 26 , 19 3 4 13 27 →= 23 10 23 13 27 , 19 3 4 13 28 →= 23 10 23 13 28 , 19 3 4 13 29 →= 23 10 23 13 29 , 22 3 4 13 26 →= 32 10 23 13 26 , 22 3 4 13 27 →= 32 10 23 13 27 , 22 3 4 13 28 →= 32 10 23 13 28 , 22 3 4 13 29 →= 32 10 23 13 29 , 50 3 4 13 26 →= 41 10 23 13 26 , 50 3 4 13 27 →= 41 10 23 13 27 , 50 3 4 13 28 →= 41 10 23 13 28 , 50 3 4 13 29 →= 41 10 23 13 29 , 51 3 4 13 26 →= 42 10 23 13 26 , 51 3 4 13 27 →= 42 10 23 13 27 , 51 3 4 13 28 →= 42 10 23 13 28 , 51 3 4 13 29 →= 42 10 23 13 29 , 2 3 4 15 30 →= 5 10 23 15 30 , 3 3 4 15 30 →= 4 10 23 15 30 , 19 3 4 15 30 →= 23 10 23 15 30 , 22 3 4 15 30 →= 32 10 23 15 30 , 50 3 4 15 30 →= 41 10 23 15 30 , 51 3 4 15 30 →= 42 10 23 15 30 , 10 19 4 10 19 →= 13 26 23 10 19 , 10 19 4 10 23 →= 13 26 23 10 23 , 10 19 4 10 24 →= 13 26 23 10 24 , 10 19 4 10 25 →= 13 26 23 10 25 , 12 19 4 10 19 →= 14 26 23 10 19 , 12 19 4 10 23 →= 14 26 23 10 23 , 12 19 4 10 24 →= 14 26 23 10 24 , 12 19 4 10 25 →= 14 26 23 10 25 , 26 19 4 10 19 →= 27 26 23 10 19 , 26 19 4 10 23 →= 27 26 23 10 23 , 26 19 4 10 24 →= 27 26 23 10 24 , 26 19 4 10 25 →= 27 26 23 10 25 , 36 19 4 10 19 →= 37 26 23 10 19 , 36 19 4 10 23 →= 37 26 23 10 23 , 36 19 4 10 24 →= 37 26 23 10 24 , 36 19 4 10 25 →= 37 26 23 10 25 , 47 19 4 10 19 →= 43 26 23 10 19 , 47 19 4 10 23 →= 43 26 23 10 23 , 47 19 4 10 24 →= 43 26 23 10 24 , 47 19 4 10 25 →= 43 26 23 10 25 , 52 19 4 10 19 →= 44 26 23 10 19 , 52 19 4 10 23 →= 44 26 23 10 23 , 52 19 4 10 24 →= 44 26 23 10 24 , 52 19 4 10 25 →= 44 26 23 10 25 , 10 19 4 13 26 →= 13 26 23 13 26 , 10 19 4 13 27 →= 13 26 23 13 27 , 10 19 4 13 28 →= 13 26 23 13 28 , 10 19 4 13 29 →= 13 26 23 13 29 , 12 19 4 13 26 →= 14 26 23 13 26 , 12 19 4 13 27 →= 14 26 23 13 27 , 12 19 4 13 28 →= 14 26 23 13 28 , 12 19 4 13 29 →= 14 26 23 13 29 , 26 19 4 13 26 →= 27 26 23 13 26 , 26 19 4 13 27 →= 27 26 23 13 27 , 26 19 4 13 28 →= 27 26 23 13 28 , 26 19 4 13 29 →= 27 26 23 13 29 , 36 19 4 13 26 →= 37 26 23 13 26 , 36 19 4 13 27 →= 37 26 23 13 27 , 36 19 4 13 28 →= 37 26 23 13 28 , 36 19 4 13 29 →= 37 26 23 13 29 , 47 19 4 13 26 →= 43 26 23 13 26 , 47 19 4 13 27 →= 43 26 23 13 27 , 47 19 4 13 28 →= 43 26 23 13 28 , 47 19 4 13 29 →= 43 26 23 13 29 , 52 19 4 13 26 →= 44 26 23 13 26 , 52 19 4 13 27 →= 44 26 23 13 27 , 52 19 4 13 28 →= 44 26 23 13 28 , 52 19 4 13 29 →= 44 26 23 13 29 , 10 19 4 15 30 →= 13 26 23 15 30 , 12 19 4 15 30 →= 14 26 23 15 30 , 26 19 4 15 30 →= 27 26 23 15 30 , 36 19 4 15 30 →= 37 26 23 15 30 , 47 19 4 15 30 →= 43 26 23 15 30 , 52 19 4 15 30 →= 44 26 23 15 30 , 21 22 4 10 19 →= 35 36 23 10 19 , 21 22 4 10 23 →= 35 36 23 10 23 , 21 22 4 10 24 →= 35 36 23 10 24 , 21 22 4 10 25 →= 35 36 23 10 25 , 53 22 4 10 19 →= 45 36 23 10 19 , 53 22 4 10 23 →= 45 36 23 10 23 , 53 22 4 10 24 →= 45 36 23 10 24 , 53 22 4 10 25 →= 45 36 23 10 25 , 21 22 4 13 26 →= 35 36 23 13 26 , 21 22 4 13 27 →= 35 36 23 13 27 , 21 22 4 13 28 →= 35 36 23 13 28 , 21 22 4 13 29 →= 35 36 23 13 29 , 53 22 4 13 26 →= 45 36 23 13 26 , 53 22 4 13 27 →= 45 36 23 13 27 , 53 22 4 13 28 →= 45 36 23 13 28 , 53 22 4 13 29 →= 45 36 23 13 29 , 21 22 4 15 30 →= 35 36 23 15 30 , 53 22 4 15 30 →= 45 36 23 15 30 , 54 50 4 10 19 →= 46 47 23 10 19 , 54 50 4 10 23 →= 46 47 23 10 23 , 54 50 4 10 24 →= 46 47 23 10 24 , 54 50 4 10 25 →= 46 47 23 10 25 , 54 50 4 13 26 →= 46 47 23 13 26 , 54 50 4 13 27 →= 46 47 23 13 27 , 54 50 4 13 28 →= 46 47 23 13 28 , 54 50 4 13 29 →= 46 47 23 13 29 , 54 50 4 15 30 →= 46 47 23 15 30 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 26 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 27 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 28 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 29 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 30 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 31 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 32 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 33 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 34 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 35 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 36 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 37 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 38 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 39 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 40 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 41 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 42 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 43 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 44 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 45 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 46 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 47 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 48 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 49 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 50 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 51 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 52 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 53 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 54 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 11 ↦ 4, 12 ↦ 5, 19 ↦ 6, 40 ↦ 7, 5 ↦ 8, 10 ↦ 9, 4 ↦ 10, 23 ↦ 11, 32 ↦ 12, 41 ↦ 13, 42 ↦ 14, 13 ↦ 15, 26 ↦ 16, 14 ↦ 17, 27 ↦ 18, 37 ↦ 19, 43 ↦ 20, 44 ↦ 21, 35 ↦ 22, 36 ↦ 23, 45 ↦ 24, 46 ↦ 25, 47 ↦ 26, 24 ↦ 27, 25 ↦ 28, 28 ↦ 29, 29 ↦ 30, 15 ↦ 31, 30 ↦ 32 }, it remains to prove termination of the 43-rule system { 0 1 2 3 3 ⟶ 0 1 2 , 4 5 6 3 3 →= 4 5 6 , 7 5 6 3 3 →= 7 5 6 , 8 9 6 3 3 →= 8 9 6 , 10 9 6 3 3 →= 10 9 6 , 11 9 6 3 3 →= 11 9 6 , 12 9 6 3 3 →= 12 9 6 , 13 9 6 3 3 →= 13 9 6 , 14 9 6 3 3 →= 14 9 6 , 8 9 6 10 9 →= 8 15 16 , 10 9 6 10 9 →= 10 15 16 , 11 9 6 10 9 →= 11 15 16 , 12 9 6 10 9 →= 12 15 16 , 13 9 6 10 9 →= 13 15 16 , 14 9 6 10 9 →= 14 15 16 , 15 16 6 3 3 →= 15 16 6 , 17 16 6 3 3 →= 17 16 6 , 18 16 6 3 3 →= 18 16 6 , 19 16 6 3 3 →= 19 16 6 , 20 16 6 3 3 →= 20 16 6 , 21 16 6 3 3 →= 21 16 6 , 22 23 6 3 3 →= 22 23 6 , 24 23 6 3 3 →= 24 23 6 , 25 26 6 3 3 →= 25 26 6 , 11 15 16 11 →= 6 3 3 3 10 , 3 3 10 9 6 →= 10 9 11 9 6 , 3 3 10 9 11 →= 10 9 11 9 11 , 3 3 10 9 27 →= 10 9 11 9 27 , 3 3 10 9 28 →= 10 9 11 9 28 , 3 3 10 15 16 →= 10 9 11 15 16 , 3 3 10 15 18 →= 10 9 11 15 18 , 3 3 10 15 29 →= 10 9 11 15 29 , 3 3 10 15 30 →= 10 9 11 15 30 , 3 3 10 31 32 →= 10 9 11 31 32 , 9 6 10 9 6 →= 15 16 11 9 6 , 9 6 10 9 11 →= 15 16 11 9 11 , 9 6 10 9 27 →= 15 16 11 9 27 , 9 6 10 9 28 →= 15 16 11 9 28 , 9 6 10 15 16 →= 15 16 11 15 16 , 9 6 10 15 18 →= 15 16 11 15 18 , 9 6 10 15 29 →= 15 16 11 15 29 , 9 6 10 15 30 →= 15 16 11 15 30 , 9 6 10 31 32 →= 15 16 11 31 32 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 1 0 0 1 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 26 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 27 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 28 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 29 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 30 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 31 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 32 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 5 ↦ 1, 6 ↦ 2, 3 ↦ 3, 7 ↦ 4, 8 ↦ 5, 9 ↦ 6, 10 ↦ 7, 11 ↦ 8, 12 ↦ 9, 13 ↦ 10, 14 ↦ 11, 15 ↦ 12, 16 ↦ 13, 17 ↦ 14, 18 ↦ 15, 19 ↦ 16, 20 ↦ 17, 21 ↦ 18, 22 ↦ 19, 23 ↦ 20, 24 ↦ 21, 25 ↦ 22, 26 ↦ 23, 27 ↦ 24, 28 ↦ 25, 29 ↦ 26, 30 ↦ 27, 31 ↦ 28, 32 ↦ 29 }, it remains to prove termination of the 42-rule system { 0 1 2 3 3 →= 0 1 2 , 4 1 2 3 3 →= 4 1 2 , 5 6 2 3 3 →= 5 6 2 , 7 6 2 3 3 →= 7 6 2 , 8 6 2 3 3 →= 8 6 2 , 9 6 2 3 3 →= 9 6 2 , 10 6 2 3 3 →= 10 6 2 , 11 6 2 3 3 →= 11 6 2 , 5 6 2 7 6 →= 5 12 13 , 7 6 2 7 6 →= 7 12 13 , 8 6 2 7 6 →= 8 12 13 , 9 6 2 7 6 →= 9 12 13 , 10 6 2 7 6 →= 10 12 13 , 11 6 2 7 6 →= 11 12 13 , 12 13 2 3 3 →= 12 13 2 , 14 13 2 3 3 →= 14 13 2 , 15 13 2 3 3 →= 15 13 2 , 16 13 2 3 3 →= 16 13 2 , 17 13 2 3 3 →= 17 13 2 , 18 13 2 3 3 →= 18 13 2 , 19 20 2 3 3 →= 19 20 2 , 21 20 2 3 3 →= 21 20 2 , 22 23 2 3 3 →= 22 23 2 , 8 12 13 8 →= 2 3 3 3 7 , 3 3 7 6 2 →= 7 6 8 6 2 , 3 3 7 6 8 →= 7 6 8 6 8 , 3 3 7 6 24 →= 7 6 8 6 24 , 3 3 7 6 25 →= 7 6 8 6 25 , 3 3 7 12 13 →= 7 6 8 12 13 , 3 3 7 12 15 →= 7 6 8 12 15 , 3 3 7 12 26 →= 7 6 8 12 26 , 3 3 7 12 27 →= 7 6 8 12 27 , 3 3 7 28 29 →= 7 6 8 28 29 , 6 2 7 6 2 →= 12 13 8 6 2 , 6 2 7 6 8 →= 12 13 8 6 8 , 6 2 7 6 24 →= 12 13 8 6 24 , 6 2 7 6 25 →= 12 13 8 6 25 , 6 2 7 12 13 →= 12 13 8 12 13 , 6 2 7 12 15 →= 12 13 8 12 15 , 6 2 7 12 26 →= 12 13 8 12 26 , 6 2 7 12 27 →= 12 13 8 12 27 , 6 2 7 28 29 →= 12 13 8 28 29 } The system is trivially terminating.