/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 1 1 1 0 2 , 1 ⟶ , 2 2 ⟶ 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 1 0 ⟶ 2 0 1 1 1 , 1 ⟶ , 2 2 ⟶ 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (1,↑) ↦ 0, (0,↓) ↦ 1, (2,↑) ↦ 2, (1,↓) ↦ 3, (0,↑) ↦ 4, (2,↓) ↦ 5 }, it remains to prove termination of the 10-rule system { 0 1 ⟶ 2 1 3 3 3 , 0 1 ⟶ 4 3 3 3 , 0 1 ⟶ 0 3 3 , 0 1 ⟶ 0 3 , 0 1 ⟶ 0 , 2 5 ⟶ 4 , 1 →= , 3 1 →= 5 1 3 3 3 , 3 →= , 5 5 →= 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 3 ↦ 2, 2 ↦ 3, 5 ↦ 4, 4 ↦ 5 }, it remains to prove termination of the 8-rule system { 0 1 ⟶ 0 2 2 , 0 1 ⟶ 0 2 , 0 1 ⟶ 0 , 3 4 ⟶ 5 , 1 →= , 2 1 →= 4 1 2 2 2 , 2 →= , 4 4 →= 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 0 2 2 , 0 1 ⟶ 0 2 , 0 1 ⟶ 0 , 1 →= , 2 1 →= 3 1 2 2 2 , 2 →= , 3 3 →= 1 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (0,2) ↦ 3, (2,2) ↦ 4, (2,1) ↦ 5, (1,2) ↦ 6, (1,3) ↦ 7, (2,3) ↦ 8, (1,5) ↦ 9, (2,5) ↦ 10, (0,3) ↦ 11, (0,5) ↦ 12, (3,1) ↦ 13, (3,2) ↦ 14, (3,3) ↦ 15, (3,5) ↦ 16, (4,1) ↦ 17, (4,2) ↦ 18, (4,3) ↦ 19, (4,5) ↦ 20 }, it remains to prove termination of the 92-rule system { 0 1 2 ⟶ 0 3 4 5 , 0 1 6 ⟶ 0 3 4 4 , 0 1 7 ⟶ 0 3 4 8 , 0 1 9 ⟶ 0 3 4 10 , 0 1 2 ⟶ 0 3 5 , 0 1 6 ⟶ 0 3 4 , 0 1 7 ⟶ 0 3 8 , 0 1 9 ⟶ 0 3 10 , 0 1 2 ⟶ 0 1 , 0 1 6 ⟶ 0 3 , 0 1 7 ⟶ 0 11 , 0 1 9 ⟶ 0 12 , 1 2 →= 1 , 1 6 →= 3 , 1 7 →= 11 , 1 9 →= 12 , 2 2 →= 2 , 2 6 →= 6 , 2 7 →= 7 , 2 9 →= 9 , 5 2 →= 5 , 5 6 →= 4 , 5 7 →= 8 , 5 9 →= 10 , 13 2 →= 13 , 13 6 →= 14 , 13 7 →= 15 , 13 9 →= 16 , 17 2 →= 17 , 17 6 →= 18 , 17 7 →= 19 , 17 9 →= 20 , 3 5 2 →= 11 13 6 4 4 5 , 3 5 6 →= 11 13 6 4 4 4 , 3 5 7 →= 11 13 6 4 4 8 , 3 5 9 →= 11 13 6 4 4 10 , 6 5 2 →= 7 13 6 4 4 5 , 6 5 6 →= 7 13 6 4 4 4 , 6 5 7 →= 7 13 6 4 4 8 , 6 5 9 →= 7 13 6 4 4 10 , 4 5 2 →= 8 13 6 4 4 5 , 4 5 6 →= 8 13 6 4 4 4 , 4 5 7 →= 8 13 6 4 4 8 , 4 5 9 →= 8 13 6 4 4 10 , 14 5 2 →= 15 13 6 4 4 5 , 14 5 6 →= 15 13 6 4 4 4 , 14 5 7 →= 15 13 6 4 4 8 , 14 5 9 →= 15 13 6 4 4 10 , 18 5 2 →= 19 13 6 4 4 5 , 18 5 6 →= 19 13 6 4 4 4 , 18 5 7 →= 19 13 6 4 4 8 , 18 5 9 →= 19 13 6 4 4 10 , 3 5 →= 1 , 3 4 →= 3 , 3 8 →= 11 , 3 10 →= 12 , 6 5 →= 2 , 6 4 →= 6 , 6 8 →= 7 , 6 10 →= 9 , 4 5 →= 5 , 4 4 →= 4 , 4 8 →= 8 , 4 10 →= 10 , 14 5 →= 13 , 14 4 →= 14 , 14 8 →= 15 , 14 10 →= 16 , 18 5 →= 17 , 18 4 →= 18 , 18 8 →= 19 , 18 10 →= 20 , 11 15 13 →= 1 2 , 11 15 14 →= 1 6 , 11 15 15 →= 1 7 , 11 15 16 →= 1 9 , 7 15 13 →= 2 2 , 7 15 14 →= 2 6 , 7 15 15 →= 2 7 , 7 15 16 →= 2 9 , 8 15 13 →= 5 2 , 8 15 14 →= 5 6 , 8 15 15 →= 5 7 , 8 15 16 →= 5 9 , 15 15 13 →= 13 2 , 15 15 14 →= 13 6 , 15 15 15 →= 13 7 , 15 15 16 →= 13 9 , 19 15 13 →= 17 2 , 19 15 14 →= 17 6 , 19 15 15 →= 17 7 , 19 15 16 →= 17 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 13 ↦ 0, 6 ↦ 1, 14 ↦ 2, 7 ↦ 3, 15 ↦ 4, 5 ↦ 5, 2 ↦ 6, 4 ↦ 7, 8 ↦ 8, 9 ↦ 9, 10 ↦ 10, 3 ↦ 11, 18 ↦ 12 }, it remains to prove termination of the 28-rule system { 0 1 →= 2 , 0 3 →= 4 , 1 5 6 →= 3 0 1 7 7 5 , 1 5 1 →= 3 0 1 7 7 7 , 1 5 3 →= 3 0 1 7 7 8 , 1 5 9 →= 3 0 1 7 7 10 , 7 5 6 →= 8 0 1 7 7 5 , 7 5 1 →= 8 0 1 7 7 7 , 7 5 3 →= 8 0 1 7 7 8 , 7 5 9 →= 8 0 1 7 7 10 , 2 5 6 →= 4 0 1 7 7 5 , 2 5 1 →= 4 0 1 7 7 7 , 2 5 3 →= 4 0 1 7 7 8 , 2 5 9 →= 4 0 1 7 7 10 , 11 7 →= 11 , 1 5 →= 6 , 1 7 →= 1 , 1 8 →= 3 , 1 10 →= 9 , 7 5 →= 5 , 7 7 →= 7 , 7 8 →= 8 , 7 10 →= 10 , 2 7 →= 2 , 2 8 →= 4 , 12 7 →= 12 , 3 4 0 →= 6 6 , 8 4 0 →= 5 6 } The system is trivially terminating.