/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ 1 , 0 1 ⟶ , 1 0 ⟶ 0 2 0 1 , 2 2 ⟶ } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ 1 , 1 0 ⟶ , 0 1 ⟶ 1 0 2 0 , 2 2 ⟶ } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (1,0) ↦ 2, (1,1) ↦ 3, (0,2) ↦ 4, (1,2) ↦ 5, (0,4) ↦ 6, (1,4) ↦ 7, (2,0) ↦ 8, (2,1) ↦ 9, (3,0) ↦ 10, (3,1) ↦ 11, (2,2) ↦ 12, (2,4) ↦ 13, (3,2) ↦ 14, (3,4) ↦ 15 }, it remains to prove termination of the 64-rule system { 0 0 ⟶ 1 2 , 0 1 ⟶ 1 3 , 0 4 ⟶ 1 5 , 0 6 ⟶ 1 7 , 2 0 ⟶ 3 2 , 2 1 ⟶ 3 3 , 2 4 ⟶ 3 5 , 2 6 ⟶ 3 7 , 8 0 ⟶ 9 2 , 8 1 ⟶ 9 3 , 8 4 ⟶ 9 5 , 8 6 ⟶ 9 7 , 10 0 ⟶ 11 2 , 10 1 ⟶ 11 3 , 10 4 ⟶ 11 5 , 10 6 ⟶ 11 7 , 1 2 0 ⟶ 0 , 1 2 1 ⟶ 1 , 1 2 4 ⟶ 4 , 1 2 6 ⟶ 6 , 3 2 0 ⟶ 2 , 3 2 1 ⟶ 3 , 3 2 4 ⟶ 5 , 3 2 6 ⟶ 7 , 9 2 0 ⟶ 8 , 9 2 1 ⟶ 9 , 9 2 4 ⟶ 12 , 9 2 6 ⟶ 13 , 11 2 0 ⟶ 10 , 11 2 1 ⟶ 11 , 11 2 4 ⟶ 14 , 11 2 6 ⟶ 15 , 0 1 2 ⟶ 1 2 4 8 0 , 0 1 3 ⟶ 1 2 4 8 1 , 0 1 5 ⟶ 1 2 4 8 4 , 0 1 7 ⟶ 1 2 4 8 6 , 2 1 2 ⟶ 3 2 4 8 0 , 2 1 3 ⟶ 3 2 4 8 1 , 2 1 5 ⟶ 3 2 4 8 4 , 2 1 7 ⟶ 3 2 4 8 6 , 8 1 2 ⟶ 9 2 4 8 0 , 8 1 3 ⟶ 9 2 4 8 1 , 8 1 5 ⟶ 9 2 4 8 4 , 8 1 7 ⟶ 9 2 4 8 6 , 10 1 2 ⟶ 11 2 4 8 0 , 10 1 3 ⟶ 11 2 4 8 1 , 10 1 5 ⟶ 11 2 4 8 4 , 10 1 7 ⟶ 11 2 4 8 6 , 4 12 8 ⟶ 0 , 4 12 9 ⟶ 1 , 4 12 12 ⟶ 4 , 4 12 13 ⟶ 6 , 5 12 8 ⟶ 2 , 5 12 9 ⟶ 3 , 5 12 12 ⟶ 5 , 5 12 13 ⟶ 7 , 12 12 8 ⟶ 8 , 12 12 9 ⟶ 9 , 12 12 12 ⟶ 12 , 12 12 13 ⟶ 13 , 14 12 8 ⟶ 10 , 14 12 9 ⟶ 11 , 14 12 12 ⟶ 14 , 14 12 13 ⟶ 15 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7, 8 ↦ 8, 9 ↦ 9, 12 ↦ 10 }, it remains to prove termination of the 29-rule system { 0 0 ⟶ 1 2 , 0 1 ⟶ 1 3 , 0 4 ⟶ 1 5 , 0 6 ⟶ 1 7 , 2 0 ⟶ 3 2 , 2 1 ⟶ 3 3 , 2 4 ⟶ 3 5 , 2 6 ⟶ 3 7 , 8 0 ⟶ 9 2 , 8 1 ⟶ 9 3 , 8 4 ⟶ 9 5 , 8 6 ⟶ 9 7 , 9 2 4 ⟶ 10 , 0 1 2 ⟶ 1 2 4 8 0 , 0 1 3 ⟶ 1 2 4 8 1 , 0 1 5 ⟶ 1 2 4 8 4 , 0 1 7 ⟶ 1 2 4 8 6 , 2 1 2 ⟶ 3 2 4 8 0 , 2 1 3 ⟶ 3 2 4 8 1 , 2 1 5 ⟶ 3 2 4 8 4 , 2 1 7 ⟶ 3 2 4 8 6 , 8 1 2 ⟶ 9 2 4 8 0 , 8 1 3 ⟶ 9 2 4 8 1 , 8 1 5 ⟶ 9 2 4 8 4 , 8 1 7 ⟶ 9 2 4 8 6 , 4 10 8 ⟶ 0 , 4 10 9 ⟶ 1 , 5 10 8 ⟶ 2 , 5 10 9 ⟶ 3 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (0,↓) ↦ 1, (2,↑) ↦ 2, (4,↓) ↦ 3, (5,↑) ↦ 4, (8,↑) ↦ 5, (9,↑) ↦ 6, (2,↓) ↦ 7, (1,↓) ↦ 8, (3,↓) ↦ 9, (5,↓) ↦ 10, (6,↓) ↦ 11, (7,↓) ↦ 12, (8,↓) ↦ 13, (4,↑) ↦ 14, (10,↓) ↦ 15, (9,↓) ↦ 16 }, it remains to prove termination of the 87-rule system { 0 1 ⟶ 2 , 0 3 ⟶ 4 , 2 1 ⟶ 2 , 2 3 ⟶ 4 , 5 1 ⟶ 6 7 , 5 1 ⟶ 2 , 5 8 ⟶ 6 9 , 5 3 ⟶ 6 10 , 5 3 ⟶ 4 , 5 11 ⟶ 6 12 , 0 8 7 ⟶ 2 3 13 1 , 0 8 7 ⟶ 14 13 1 , 0 8 7 ⟶ 5 1 , 0 8 7 ⟶ 0 , 0 8 9 ⟶ 2 3 13 8 , 0 8 9 ⟶ 14 13 8 , 0 8 9 ⟶ 5 8 , 0 8 10 ⟶ 2 3 13 3 , 0 8 10 ⟶ 14 13 3 , 0 8 10 ⟶ 5 3 , 0 8 10 ⟶ 14 , 0 8 12 ⟶ 2 3 13 11 , 0 8 12 ⟶ 14 13 11 , 0 8 12 ⟶ 5 11 , 2 8 7 ⟶ 2 3 13 1 , 2 8 7 ⟶ 14 13 1 , 2 8 7 ⟶ 5 1 , 2 8 7 ⟶ 0 , 2 8 9 ⟶ 2 3 13 8 , 2 8 9 ⟶ 14 13 8 , 2 8 9 ⟶ 5 8 , 2 8 10 ⟶ 2 3 13 3 , 2 8 10 ⟶ 14 13 3 , 2 8 10 ⟶ 5 3 , 2 8 10 ⟶ 14 , 2 8 12 ⟶ 2 3 13 11 , 2 8 12 ⟶ 14 13 11 , 2 8 12 ⟶ 5 11 , 5 8 7 ⟶ 6 7 3 13 1 , 5 8 7 ⟶ 2 3 13 1 , 5 8 7 ⟶ 14 13 1 , 5 8 7 ⟶ 5 1 , 5 8 7 ⟶ 0 , 5 8 9 ⟶ 6 7 3 13 8 , 5 8 9 ⟶ 2 3 13 8 , 5 8 9 ⟶ 14 13 8 , 5 8 9 ⟶ 5 8 , 5 8 10 ⟶ 6 7 3 13 3 , 5 8 10 ⟶ 2 3 13 3 , 5 8 10 ⟶ 14 13 3 , 5 8 10 ⟶ 5 3 , 5 8 10 ⟶ 14 , 5 8 12 ⟶ 6 7 3 13 11 , 5 8 12 ⟶ 2 3 13 11 , 5 8 12 ⟶ 14 13 11 , 5 8 12 ⟶ 5 11 , 14 15 13 ⟶ 0 , 4 15 13 ⟶ 2 , 1 1 →= 8 7 , 1 8 →= 8 9 , 1 3 →= 8 10 , 1 11 →= 8 12 , 7 1 →= 9 7 , 7 8 →= 9 9 , 7 3 →= 9 10 , 7 11 →= 9 12 , 13 1 →= 16 7 , 13 8 →= 16 9 , 13 3 →= 16 10 , 13 11 →= 16 12 , 16 7 3 →= 15 , 1 8 7 →= 8 7 3 13 1 , 1 8 9 →= 8 7 3 13 8 , 1 8 10 →= 8 7 3 13 3 , 1 8 12 →= 8 7 3 13 11 , 7 8 7 →= 9 7 3 13 1 , 7 8 9 →= 9 7 3 13 8 , 7 8 10 →= 9 7 3 13 3 , 7 8 12 →= 9 7 3 13 11 , 13 8 7 →= 16 7 3 13 1 , 13 8 9 →= 16 7 3 13 8 , 13 8 10 →= 16 7 3 13 3 , 13 8 12 →= 16 7 3 13 11 , 3 15 13 →= 1 , 3 15 16 →= 8 , 10 15 13 →= 7 , 10 15 16 →= 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 1 ↦ 0, 8 ↦ 1, 7 ↦ 2, 9 ↦ 3, 3 ↦ 4, 10 ↦ 5, 11 ↦ 6, 12 ↦ 7, 13 ↦ 8, 16 ↦ 9, 15 ↦ 10 }, it remains to prove termination of the 29-rule system { 0 0 →= 1 2 , 0 1 →= 1 3 , 0 4 →= 1 5 , 0 6 →= 1 7 , 2 0 →= 3 2 , 2 1 →= 3 3 , 2 4 →= 3 5 , 2 6 →= 3 7 , 8 0 →= 9 2 , 8 1 →= 9 3 , 8 4 →= 9 5 , 8 6 →= 9 7 , 9 2 4 →= 10 , 0 1 2 →= 1 2 4 8 0 , 0 1 3 →= 1 2 4 8 1 , 0 1 5 →= 1 2 4 8 4 , 0 1 7 →= 1 2 4 8 6 , 2 1 2 →= 3 2 4 8 0 , 2 1 3 →= 3 2 4 8 1 , 2 1 5 →= 3 2 4 8 4 , 2 1 7 →= 3 2 4 8 6 , 8 1 2 →= 9 2 4 8 0 , 8 1 3 →= 9 2 4 8 1 , 8 1 5 →= 9 2 4 8 4 , 8 1 7 →= 9 2 4 8 6 , 4 10 8 →= 0 , 4 10 9 →= 1 , 5 10 8 →= 2 , 5 10 9 →= 3 } The system is trivially terminating.