/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 1 1 2 0 , 1 1 ⟶ 0 , 2 2 ⟶ } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 1 0 ⟶ 0 2 1 1 , 1 1 ⟶ 0 , 2 2 ⟶ } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (0,2) ↦ 2, (0,4) ↦ 3, (1,0) ↦ 4, (1,1) ↦ 5, (1,2) ↦ 6, (1,4) ↦ 7, (2,0) ↦ 8, (2,1) ↦ 9, (2,2) ↦ 10, (2,4) ↦ 11, (3,0) ↦ 12, (3,1) ↦ 13, (3,2) ↦ 14, (3,4) ↦ 15 }, it remains to prove termination of the 64-rule system { 0 0 ⟶ 0 , 0 1 ⟶ 1 , 0 2 ⟶ 2 , 0 3 ⟶ 3 , 4 0 ⟶ 4 , 4 1 ⟶ 5 , 4 2 ⟶ 6 , 4 3 ⟶ 7 , 8 0 ⟶ 8 , 8 1 ⟶ 9 , 8 2 ⟶ 10 , 8 3 ⟶ 11 , 12 0 ⟶ 12 , 12 1 ⟶ 13 , 12 2 ⟶ 14 , 12 3 ⟶ 15 , 1 4 0 ⟶ 0 2 9 5 4 , 1 4 1 ⟶ 0 2 9 5 5 , 1 4 2 ⟶ 0 2 9 5 6 , 1 4 3 ⟶ 0 2 9 5 7 , 5 4 0 ⟶ 4 2 9 5 4 , 5 4 1 ⟶ 4 2 9 5 5 , 5 4 2 ⟶ 4 2 9 5 6 , 5 4 3 ⟶ 4 2 9 5 7 , 9 4 0 ⟶ 8 2 9 5 4 , 9 4 1 ⟶ 8 2 9 5 5 , 9 4 2 ⟶ 8 2 9 5 6 , 9 4 3 ⟶ 8 2 9 5 7 , 13 4 0 ⟶ 12 2 9 5 4 , 13 4 1 ⟶ 12 2 9 5 5 , 13 4 2 ⟶ 12 2 9 5 6 , 13 4 3 ⟶ 12 2 9 5 7 , 1 5 4 ⟶ 0 0 , 1 5 5 ⟶ 0 1 , 1 5 6 ⟶ 0 2 , 1 5 7 ⟶ 0 3 , 5 5 4 ⟶ 4 0 , 5 5 5 ⟶ 4 1 , 5 5 6 ⟶ 4 2 , 5 5 7 ⟶ 4 3 , 9 5 4 ⟶ 8 0 , 9 5 5 ⟶ 8 1 , 9 5 6 ⟶ 8 2 , 9 5 7 ⟶ 8 3 , 13 5 4 ⟶ 12 0 , 13 5 5 ⟶ 12 1 , 13 5 6 ⟶ 12 2 , 13 5 7 ⟶ 12 3 , 2 10 8 ⟶ 0 , 2 10 9 ⟶ 1 , 2 10 10 ⟶ 2 , 2 10 11 ⟶ 3 , 6 10 8 ⟶ 4 , 6 10 9 ⟶ 5 , 6 10 10 ⟶ 6 , 6 10 11 ⟶ 7 , 10 10 8 ⟶ 8 , 10 10 9 ⟶ 9 , 10 10 10 ⟶ 10 , 10 10 11 ⟶ 11 , 14 10 8 ⟶ 12 , 14 10 9 ⟶ 13 , 14 10 10 ⟶ 14 , 14 10 11 ⟶ 15 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 8 ↦ 0, 2 ↦ 1, 10 ↦ 2, 1 ↦ 3, 4 ↦ 4, 0 ↦ 5, 9 ↦ 6, 5 ↦ 7, 6 ↦ 8, 3 ↦ 9, 7 ↦ 10 }, it remains to prove termination of the 29-rule system { 0 1 ⟶ 2 , 3 4 5 ⟶ 5 1 6 7 4 , 3 4 3 ⟶ 5 1 6 7 7 , 3 4 1 ⟶ 5 1 6 7 8 , 3 4 9 ⟶ 5 1 6 7 10 , 7 4 5 ⟶ 4 1 6 7 4 , 7 4 3 ⟶ 4 1 6 7 7 , 7 4 1 ⟶ 4 1 6 7 8 , 7 4 9 ⟶ 4 1 6 7 10 , 6 4 5 ⟶ 0 1 6 7 4 , 6 4 3 ⟶ 0 1 6 7 7 , 6 4 1 ⟶ 0 1 6 7 8 , 6 4 9 ⟶ 0 1 6 7 10 , 3 7 4 ⟶ 5 5 , 3 7 7 ⟶ 5 3 , 3 7 8 ⟶ 5 1 , 3 7 10 ⟶ 5 9 , 7 7 4 ⟶ 4 5 , 7 7 7 ⟶ 4 3 , 7 7 8 ⟶ 4 1 , 7 7 10 ⟶ 4 9 , 6 7 4 ⟶ 0 5 , 6 7 7 ⟶ 0 3 , 6 7 8 ⟶ 0 1 , 6 7 10 ⟶ 0 9 , 1 2 0 ⟶ 5 , 1 2 6 ⟶ 3 , 8 2 0 ⟶ 4 , 8 2 6 ⟶ 7 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (3,↑) ↦ 0, (4,↓) ↦ 1, (5,↓) ↦ 2, (1,↑) ↦ 3, (6,↓) ↦ 4, (7,↓) ↦ 5, (6,↑) ↦ 6, (7,↑) ↦ 7, (3,↓) ↦ 8, (1,↓) ↦ 9, (8,↓) ↦ 10, (8,↑) ↦ 11, (9,↓) ↦ 12, (10,↓) ↦ 13, (0,↑) ↦ 14, (2,↓) ↦ 15, (0,↓) ↦ 16 }, it remains to prove termination of the 87-rule system { 0 1 2 ⟶ 3 4 5 1 , 0 1 2 ⟶ 6 5 1 , 0 1 2 ⟶ 7 1 , 0 1 8 ⟶ 3 4 5 5 , 0 1 8 ⟶ 6 5 5 , 0 1 8 ⟶ 7 5 , 0 1 8 ⟶ 7 , 0 1 9 ⟶ 3 4 5 10 , 0 1 9 ⟶ 6 5 10 , 0 1 9 ⟶ 7 10 , 0 1 9 ⟶ 11 , 0 1 12 ⟶ 3 4 5 13 , 0 1 12 ⟶ 6 5 13 , 0 1 12 ⟶ 7 13 , 7 1 2 ⟶ 3 4 5 1 , 7 1 2 ⟶ 6 5 1 , 7 1 2 ⟶ 7 1 , 7 1 8 ⟶ 3 4 5 5 , 7 1 8 ⟶ 6 5 5 , 7 1 8 ⟶ 7 5 , 7 1 8 ⟶ 7 , 7 1 9 ⟶ 3 4 5 10 , 7 1 9 ⟶ 6 5 10 , 7 1 9 ⟶ 7 10 , 7 1 9 ⟶ 11 , 7 1 12 ⟶ 3 4 5 13 , 7 1 12 ⟶ 6 5 13 , 7 1 12 ⟶ 7 13 , 6 1 2 ⟶ 14 9 4 5 1 , 6 1 2 ⟶ 3 4 5 1 , 6 1 2 ⟶ 6 5 1 , 6 1 2 ⟶ 7 1 , 6 1 8 ⟶ 14 9 4 5 5 , 6 1 8 ⟶ 3 4 5 5 , 6 1 8 ⟶ 6 5 5 , 6 1 8 ⟶ 7 5 , 6 1 8 ⟶ 7 , 6 1 9 ⟶ 14 9 4 5 10 , 6 1 9 ⟶ 3 4 5 10 , 6 1 9 ⟶ 6 5 10 , 6 1 9 ⟶ 7 10 , 6 1 9 ⟶ 11 , 6 1 12 ⟶ 14 9 4 5 13 , 6 1 12 ⟶ 3 4 5 13 , 6 1 12 ⟶ 6 5 13 , 6 1 12 ⟶ 7 13 , 0 5 5 ⟶ 0 , 0 5 10 ⟶ 3 , 7 5 5 ⟶ 0 , 7 5 10 ⟶ 3 , 6 5 1 ⟶ 14 2 , 6 5 5 ⟶ 14 8 , 6 5 5 ⟶ 0 , 6 5 10 ⟶ 14 9 , 6 5 10 ⟶ 3 , 6 5 13 ⟶ 14 12 , 3 15 4 ⟶ 0 , 11 15 4 ⟶ 7 , 16 9 →= 15 , 8 1 2 →= 2 9 4 5 1 , 8 1 8 →= 2 9 4 5 5 , 8 1 9 →= 2 9 4 5 10 , 8 1 12 →= 2 9 4 5 13 , 5 1 2 →= 1 9 4 5 1 , 5 1 8 →= 1 9 4 5 5 , 5 1 9 →= 1 9 4 5 10 , 5 1 12 →= 1 9 4 5 13 , 4 1 2 →= 16 9 4 5 1 , 4 1 8 →= 16 9 4 5 5 , 4 1 9 →= 16 9 4 5 10 , 4 1 12 →= 16 9 4 5 13 , 8 5 1 →= 2 2 , 8 5 5 →= 2 8 , 8 5 10 →= 2 9 , 8 5 13 →= 2 12 , 5 5 1 →= 1 2 , 5 5 5 →= 1 8 , 5 5 10 →= 1 9 , 5 5 13 →= 1 12 , 4 5 1 →= 16 2 , 4 5 5 →= 16 8 , 4 5 10 →= 16 9 , 4 5 13 →= 16 12 , 9 15 16 →= 2 , 9 15 4 →= 8 , 10 15 16 →= 1 , 10 15 4 →= 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 16 ↦ 0, 9 ↦ 1, 15 ↦ 2, 8 ↦ 3, 1 ↦ 4, 2 ↦ 5, 4 ↦ 6, 5 ↦ 7, 10 ↦ 8, 12 ↦ 9, 13 ↦ 10 }, it remains to prove termination of the 29-rule system { 0 1 →= 2 , 3 4 5 →= 5 1 6 7 4 , 3 4 3 →= 5 1 6 7 7 , 3 4 1 →= 5 1 6 7 8 , 3 4 9 →= 5 1 6 7 10 , 7 4 5 →= 4 1 6 7 4 , 7 4 3 →= 4 1 6 7 7 , 7 4 1 →= 4 1 6 7 8 , 7 4 9 →= 4 1 6 7 10 , 6 4 5 →= 0 1 6 7 4 , 6 4 3 →= 0 1 6 7 7 , 6 4 1 →= 0 1 6 7 8 , 6 4 9 →= 0 1 6 7 10 , 3 7 4 →= 5 5 , 3 7 7 →= 5 3 , 3 7 8 →= 5 1 , 3 7 10 →= 5 9 , 7 7 4 →= 4 5 , 7 7 7 →= 4 3 , 7 7 8 →= 4 1 , 7 7 10 →= 4 9 , 6 7 4 →= 0 5 , 6 7 7 →= 0 3 , 6 7 8 →= 0 1 , 6 7 10 →= 0 9 , 1 2 0 →= 5 , 1 2 6 →= 3 , 8 2 0 →= 4 , 8 2 6 →= 7 } The system is trivially terminating.