/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 0 ⟶ 1 1 2 , 2 ⟶ , 2 1 ⟶ 1 2 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 1 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 0 ⟶ 1 2 2 , 1 ⟶ , 2 1 ⟶ 0 1 2 } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (0,2) ↦ 2, (1,0) ↦ 3, (1,1) ↦ 4, (1,2) ↦ 5, (2,0) ↦ 6, (2,1) ↦ 7, (2,2) ↦ 8, (3,0) ↦ 9, (3,1) ↦ 10, (3,2) ↦ 11 }, it remains to prove termination of the 48-rule system { 0 0 ⟶ 0 , 0 1 ⟶ 1 , 0 2 ⟶ 2 , 3 0 ⟶ 3 , 3 1 ⟶ 4 , 3 2 ⟶ 5 , 6 0 ⟶ 6 , 6 1 ⟶ 7 , 6 2 ⟶ 8 , 9 0 ⟶ 9 , 9 1 ⟶ 10 , 9 2 ⟶ 11 , 0 0 0 ⟶ 1 5 8 6 , 0 0 1 ⟶ 1 5 8 7 , 0 0 2 ⟶ 1 5 8 8 , 3 0 0 ⟶ 4 5 8 6 , 3 0 1 ⟶ 4 5 8 7 , 3 0 2 ⟶ 4 5 8 8 , 6 0 0 ⟶ 7 5 8 6 , 6 0 1 ⟶ 7 5 8 7 , 6 0 2 ⟶ 7 5 8 8 , 9 0 0 ⟶ 10 5 8 6 , 9 0 1 ⟶ 10 5 8 7 , 9 0 2 ⟶ 10 5 8 8 , 1 3 ⟶ 0 , 1 4 ⟶ 1 , 1 5 ⟶ 2 , 4 3 ⟶ 3 , 4 4 ⟶ 4 , 4 5 ⟶ 5 , 7 3 ⟶ 6 , 7 4 ⟶ 7 , 7 5 ⟶ 8 , 10 3 ⟶ 9 , 10 4 ⟶ 10 , 10 5 ⟶ 11 , 2 7 3 ⟶ 0 1 5 6 , 2 7 4 ⟶ 0 1 5 7 , 2 7 5 ⟶ 0 1 5 8 , 5 7 3 ⟶ 3 1 5 6 , 5 7 4 ⟶ 3 1 5 7 , 5 7 5 ⟶ 3 1 5 8 , 8 7 3 ⟶ 6 1 5 6 , 8 7 4 ⟶ 6 1 5 7 , 8 7 5 ⟶ 6 1 5 8 , 11 7 3 ⟶ 9 1 5 6 , 11 7 4 ⟶ 9 1 5 7 , 11 7 5 ⟶ 9 1 5 8 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 1 ↦ 1, 4 ↦ 2, 6 ↦ 3, 7 ↦ 4, 0 ↦ 5, 5 ↦ 6, 8 ↦ 7, 2 ↦ 8 }, it remains to prove termination of the 15-rule system { 0 1 ⟶ 2 , 3 1 ⟶ 4 , 0 5 1 ⟶ 2 6 7 4 , 3 5 1 ⟶ 4 6 7 4 , 1 0 ⟶ 5 , 1 6 ⟶ 8 , 8 4 0 ⟶ 5 1 6 3 , 8 4 2 ⟶ 5 1 6 4 , 8 4 6 ⟶ 5 1 6 7 , 6 4 0 ⟶ 0 1 6 3 , 6 4 2 ⟶ 0 1 6 4 , 6 4 6 ⟶ 0 1 6 7 , 7 4 0 ⟶ 3 1 6 3 , 7 4 2 ⟶ 3 1 6 4 , 7 4 6 ⟶ 3 1 6 7 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (5,↓) ↦ 1, (1,↓) ↦ 2, (6,↑) ↦ 3, (7,↓) ↦ 4, (4,↓) ↦ 5, (7,↑) ↦ 6, (3,↑) ↦ 7, (1,↑) ↦ 8, (6,↓) ↦ 9, (8,↑) ↦ 10, (0,↓) ↦ 11, (3,↓) ↦ 12, (2,↓) ↦ 13, (8,↓) ↦ 14 }, it remains to prove termination of the 50-rule system { 0 1 2 ⟶ 3 4 5 , 0 1 2 ⟶ 6 5 , 7 1 2 ⟶ 3 4 5 , 7 1 2 ⟶ 6 5 , 8 9 ⟶ 10 , 10 5 11 ⟶ 8 9 12 , 10 5 11 ⟶ 3 12 , 10 5 11 ⟶ 7 , 10 5 13 ⟶ 8 9 5 , 10 5 13 ⟶ 3 5 , 10 5 9 ⟶ 8 9 4 , 10 5 9 ⟶ 3 4 , 10 5 9 ⟶ 6 , 3 5 11 ⟶ 0 2 9 12 , 3 5 11 ⟶ 8 9 12 , 3 5 11 ⟶ 3 12 , 3 5 11 ⟶ 7 , 3 5 13 ⟶ 0 2 9 5 , 3 5 13 ⟶ 8 9 5 , 3 5 13 ⟶ 3 5 , 3 5 9 ⟶ 0 2 9 4 , 3 5 9 ⟶ 8 9 4 , 3 5 9 ⟶ 3 4 , 3 5 9 ⟶ 6 , 6 5 11 ⟶ 7 2 9 12 , 6 5 11 ⟶ 8 9 12 , 6 5 11 ⟶ 3 12 , 6 5 11 ⟶ 7 , 6 5 13 ⟶ 7 2 9 5 , 6 5 13 ⟶ 8 9 5 , 6 5 13 ⟶ 3 5 , 6 5 9 ⟶ 7 2 9 4 , 6 5 9 ⟶ 8 9 4 , 6 5 9 ⟶ 3 4 , 6 5 9 ⟶ 6 , 11 2 →= 13 , 12 2 →= 5 , 11 1 2 →= 13 9 4 5 , 12 1 2 →= 5 9 4 5 , 2 11 →= 1 , 2 9 →= 14 , 14 5 11 →= 1 2 9 12 , 14 5 13 →= 1 2 9 5 , 14 5 9 →= 1 2 9 4 , 9 5 11 →= 11 2 9 12 , 9 5 13 →= 11 2 9 5 , 9 5 9 →= 11 2 9 4 , 4 5 11 →= 12 2 9 12 , 4 5 13 →= 12 2 9 5 , 4 5 9 →= 12 2 9 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 11 ↦ 0, 2 ↦ 1, 13 ↦ 2, 12 ↦ 3, 5 ↦ 4, 1 ↦ 5, 9 ↦ 6, 4 ↦ 7, 14 ↦ 8 }, it remains to prove termination of the 15-rule system { 0 1 →= 2 , 3 1 →= 4 , 0 5 1 →= 2 6 7 4 , 3 5 1 →= 4 6 7 4 , 1 0 →= 5 , 1 6 →= 8 , 8 4 0 →= 5 1 6 3 , 8 4 2 →= 5 1 6 4 , 8 4 6 →= 5 1 6 7 , 6 4 0 →= 0 1 6 3 , 6 4 2 →= 0 1 6 4 , 6 4 6 →= 0 1 6 7 , 7 4 0 →= 3 1 6 3 , 7 4 2 →= 3 1 6 4 , 7 4 6 →= 3 1 6 7 } The system is trivially terminating.