/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 1 1 0 2 , 1 ⟶ 0 2 , 2 2 ⟶ } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 1 0 ⟶ 2 0 1 1 , 1 ⟶ 2 0 , 2 2 ⟶ } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (0,2) ↦ 2, (0,4) ↦ 3, (1,0) ↦ 4, (1,1) ↦ 5, (1,2) ↦ 6, (1,4) ↦ 7, (2,0) ↦ 8, (2,1) ↦ 9, (2,2) ↦ 10, (2,4) ↦ 11, (3,0) ↦ 12, (3,1) ↦ 13, (3,2) ↦ 14, (3,4) ↦ 15 }, it remains to prove termination of the 64-rule system { 0 0 ⟶ 0 , 0 1 ⟶ 1 , 0 2 ⟶ 2 , 0 3 ⟶ 3 , 4 0 ⟶ 4 , 4 1 ⟶ 5 , 4 2 ⟶ 6 , 4 3 ⟶ 7 , 8 0 ⟶ 8 , 8 1 ⟶ 9 , 8 2 ⟶ 10 , 8 3 ⟶ 11 , 12 0 ⟶ 12 , 12 1 ⟶ 13 , 12 2 ⟶ 14 , 12 3 ⟶ 15 , 1 4 0 ⟶ 2 8 1 5 4 , 1 4 1 ⟶ 2 8 1 5 5 , 1 4 2 ⟶ 2 8 1 5 6 , 1 4 3 ⟶ 2 8 1 5 7 , 5 4 0 ⟶ 6 8 1 5 4 , 5 4 1 ⟶ 6 8 1 5 5 , 5 4 2 ⟶ 6 8 1 5 6 , 5 4 3 ⟶ 6 8 1 5 7 , 9 4 0 ⟶ 10 8 1 5 4 , 9 4 1 ⟶ 10 8 1 5 5 , 9 4 2 ⟶ 10 8 1 5 6 , 9 4 3 ⟶ 10 8 1 5 7 , 13 4 0 ⟶ 14 8 1 5 4 , 13 4 1 ⟶ 14 8 1 5 5 , 13 4 2 ⟶ 14 8 1 5 6 , 13 4 3 ⟶ 14 8 1 5 7 , 1 4 ⟶ 2 8 0 , 1 5 ⟶ 2 8 1 , 1 6 ⟶ 2 8 2 , 1 7 ⟶ 2 8 3 , 5 4 ⟶ 6 8 0 , 5 5 ⟶ 6 8 1 , 5 6 ⟶ 6 8 2 , 5 7 ⟶ 6 8 3 , 9 4 ⟶ 10 8 0 , 9 5 ⟶ 10 8 1 , 9 6 ⟶ 10 8 2 , 9 7 ⟶ 10 8 3 , 13 4 ⟶ 14 8 0 , 13 5 ⟶ 14 8 1 , 13 6 ⟶ 14 8 2 , 13 7 ⟶ 14 8 3 , 2 10 8 ⟶ 0 , 2 10 9 ⟶ 1 , 2 10 10 ⟶ 2 , 2 10 11 ⟶ 3 , 6 10 8 ⟶ 4 , 6 10 9 ⟶ 5 , 6 10 10 ⟶ 6 , 6 10 11 ⟶ 7 , 10 10 8 ⟶ 8 , 10 10 9 ⟶ 9 , 10 10 10 ⟶ 10 , 10 10 11 ⟶ 11 , 14 10 8 ⟶ 12 , 14 10 9 ⟶ 13 , 14 10 10 ⟶ 14 , 14 10 11 ⟶ 15 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 8 ↦ 0, 1 ↦ 1, 9 ↦ 2, 2 ↦ 3, 10 ↦ 4, 4 ↦ 5, 0 ↦ 6, 5 ↦ 7, 6 ↦ 8, 3 ↦ 9, 7 ↦ 10 }, it remains to prove termination of the 28-rule system { 0 1 ⟶ 2 , 0 3 ⟶ 4 , 1 5 6 ⟶ 3 0 1 7 5 , 1 5 1 ⟶ 3 0 1 7 7 , 1 5 3 ⟶ 3 0 1 7 8 , 1 5 9 ⟶ 3 0 1 7 10 , 7 5 6 ⟶ 8 0 1 7 5 , 7 5 1 ⟶ 8 0 1 7 7 , 7 5 3 ⟶ 8 0 1 7 8 , 7 5 9 ⟶ 8 0 1 7 10 , 2 5 6 ⟶ 4 0 1 7 5 , 2 5 1 ⟶ 4 0 1 7 7 , 2 5 3 ⟶ 4 0 1 7 8 , 2 5 9 ⟶ 4 0 1 7 10 , 1 5 ⟶ 3 0 6 , 1 7 ⟶ 3 0 1 , 1 8 ⟶ 3 0 3 , 1 10 ⟶ 3 0 9 , 7 5 ⟶ 8 0 6 , 7 7 ⟶ 8 0 1 , 7 8 ⟶ 8 0 3 , 7 10 ⟶ 8 0 9 , 2 5 ⟶ 4 0 6 , 2 7 ⟶ 4 0 1 , 2 8 ⟶ 4 0 3 , 2 10 ⟶ 4 0 9 , 3 4 0 ⟶ 6 , 8 4 0 ⟶ 5 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↑) ↦ 2, (1,↑) ↦ 3, (5,↓) ↦ 4, (6,↓) ↦ 5, (3,↑) ↦ 6, (0,↓) ↦ 7, (7,↓) ↦ 8, (7,↑) ↦ 9, (3,↓) ↦ 10, (8,↓) ↦ 11, (8,↑) ↦ 12, (9,↓) ↦ 13, (10,↓) ↦ 14, (2,↓) ↦ 15, (4,↓) ↦ 16 }, it remains to prove termination of the 105-rule system { 0 1 ⟶ 2 , 3 4 5 ⟶ 6 7 1 8 4 , 3 4 5 ⟶ 0 1 8 4 , 3 4 5 ⟶ 3 8 4 , 3 4 5 ⟶ 9 4 , 3 4 1 ⟶ 6 7 1 8 8 , 3 4 1 ⟶ 0 1 8 8 , 3 4 1 ⟶ 3 8 8 , 3 4 1 ⟶ 9 8 , 3 4 1 ⟶ 9 , 3 4 10 ⟶ 6 7 1 8 11 , 3 4 10 ⟶ 0 1 8 11 , 3 4 10 ⟶ 3 8 11 , 3 4 10 ⟶ 9 11 , 3 4 10 ⟶ 12 , 3 4 13 ⟶ 6 7 1 8 14 , 3 4 13 ⟶ 0 1 8 14 , 3 4 13 ⟶ 3 8 14 , 3 4 13 ⟶ 9 14 , 9 4 5 ⟶ 12 7 1 8 4 , 9 4 5 ⟶ 0 1 8 4 , 9 4 5 ⟶ 3 8 4 , 9 4 5 ⟶ 9 4 , 9 4 1 ⟶ 12 7 1 8 8 , 9 4 1 ⟶ 0 1 8 8 , 9 4 1 ⟶ 3 8 8 , 9 4 1 ⟶ 9 8 , 9 4 1 ⟶ 9 , 9 4 10 ⟶ 12 7 1 8 11 , 9 4 10 ⟶ 0 1 8 11 , 9 4 10 ⟶ 3 8 11 , 9 4 10 ⟶ 9 11 , 9 4 10 ⟶ 12 , 9 4 13 ⟶ 12 7 1 8 14 , 9 4 13 ⟶ 0 1 8 14 , 9 4 13 ⟶ 3 8 14 , 9 4 13 ⟶ 9 14 , 2 4 5 ⟶ 0 1 8 4 , 2 4 5 ⟶ 3 8 4 , 2 4 5 ⟶ 9 4 , 2 4 1 ⟶ 0 1 8 8 , 2 4 1 ⟶ 3 8 8 , 2 4 1 ⟶ 9 8 , 2 4 1 ⟶ 9 , 2 4 10 ⟶ 0 1 8 11 , 2 4 10 ⟶ 3 8 11 , 2 4 10 ⟶ 9 11 , 2 4 10 ⟶ 12 , 2 4 13 ⟶ 0 1 8 14 , 2 4 13 ⟶ 3 8 14 , 2 4 13 ⟶ 9 14 , 3 4 ⟶ 6 7 5 , 3 4 ⟶ 0 5 , 3 8 ⟶ 6 7 1 , 3 8 ⟶ 0 1 , 3 8 ⟶ 3 , 3 11 ⟶ 6 7 10 , 3 11 ⟶ 0 10 , 3 11 ⟶ 6 , 3 14 ⟶ 6 7 13 , 3 14 ⟶ 0 13 , 9 4 ⟶ 12 7 5 , 9 4 ⟶ 0 5 , 9 8 ⟶ 12 7 1 , 9 8 ⟶ 0 1 , 9 8 ⟶ 3 , 9 11 ⟶ 12 7 10 , 9 11 ⟶ 0 10 , 9 11 ⟶ 6 , 9 14 ⟶ 12 7 13 , 9 14 ⟶ 0 13 , 2 4 ⟶ 0 5 , 2 8 ⟶ 0 1 , 2 8 ⟶ 3 , 2 11 ⟶ 0 10 , 2 11 ⟶ 6 , 2 14 ⟶ 0 13 , 7 1 →= 15 , 7 10 →= 16 , 1 4 5 →= 10 7 1 8 4 , 1 4 1 →= 10 7 1 8 8 , 1 4 10 →= 10 7 1 8 11 , 1 4 13 →= 10 7 1 8 14 , 8 4 5 →= 11 7 1 8 4 , 8 4 1 →= 11 7 1 8 8 , 8 4 10 →= 11 7 1 8 11 , 8 4 13 →= 11 7 1 8 14 , 15 4 5 →= 16 7 1 8 4 , 15 4 1 →= 16 7 1 8 8 , 15 4 10 →= 16 7 1 8 11 , 15 4 13 →= 16 7 1 8 14 , 1 4 →= 10 7 5 , 1 8 →= 10 7 1 , 1 11 →= 10 7 10 , 1 14 →= 10 7 13 , 8 4 →= 11 7 5 , 8 8 →= 11 7 1 , 8 11 →= 11 7 10 , 8 14 →= 11 7 13 , 15 4 →= 16 7 5 , 15 8 →= 16 7 1 , 15 11 →= 16 7 10 , 15 14 →= 16 7 13 , 10 16 7 →= 5 , 11 16 7 →= 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 7 ↦ 0, 1 ↦ 1, 15 ↦ 2, 10 ↦ 3, 16 ↦ 4, 4 ↦ 5, 5 ↦ 6, 8 ↦ 7, 11 ↦ 8, 13 ↦ 9, 14 ↦ 10 }, it remains to prove termination of the 28-rule system { 0 1 →= 2 , 0 3 →= 4 , 1 5 6 →= 3 0 1 7 5 , 1 5 1 →= 3 0 1 7 7 , 1 5 3 →= 3 0 1 7 8 , 1 5 9 →= 3 0 1 7 10 , 7 5 6 →= 8 0 1 7 5 , 7 5 1 →= 8 0 1 7 7 , 7 5 3 →= 8 0 1 7 8 , 7 5 9 →= 8 0 1 7 10 , 2 5 6 →= 4 0 1 7 5 , 2 5 1 →= 4 0 1 7 7 , 2 5 3 →= 4 0 1 7 8 , 2 5 9 →= 4 0 1 7 10 , 1 5 →= 3 0 6 , 1 7 →= 3 0 1 , 1 8 →= 3 0 3 , 1 10 →= 3 0 9 , 7 5 →= 8 0 6 , 7 7 →= 8 0 1 , 7 8 →= 8 0 3 , 7 10 →= 8 0 9 , 2 5 →= 4 0 6 , 2 7 →= 4 0 1 , 2 8 →= 4 0 3 , 2 10 →= 4 0 9 , 3 4 0 →= 6 , 8 4 0 →= 5 } The system is trivially terminating.