/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 2 1 , 1 ⟶ 0 0 2 , 2 2 ⟶ 1 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↑) ↦ 2, (1,↑) ↦ 3, (0,↓) ↦ 4, (2,↓) ↦ 5 }, it remains to prove termination of the 9-rule system { 0 1 ⟶ 2 1 , 3 ⟶ 0 4 5 , 3 ⟶ 0 5 , 3 ⟶ 2 , 2 5 ⟶ 3 , 4 →= , 4 1 →= 5 1 , 1 →= 4 4 5 , 5 5 →= 1 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (6,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (6,2) ↦ 3, (2,1) ↦ 4, (1,4) ↦ 5, (1,5) ↦ 6, (1,7) ↦ 7, (6,3) ↦ 8, (3,1) ↦ 9, (0,4) ↦ 10, (4,5) ↦ 11, (5,1) ↦ 12, (3,4) ↦ 13, (5,4) ↦ 14, (3,5) ↦ 15, (5,5) ↦ 16, (3,7) ↦ 17, (5,7) ↦ 18, (0,5) ↦ 19, (2,4) ↦ 20, (2,5) ↦ 21, (2,7) ↦ 22, (4,1) ↦ 23, (4,4) ↦ 24, (6,4) ↦ 25, (6,1) ↦ 26, (6,5) ↦ 27 }, it remains to prove termination of the 125-rule system { 0 1 2 ⟶ 3 4 2 , 0 1 5 ⟶ 3 4 5 , 0 1 6 ⟶ 3 4 6 , 0 1 7 ⟶ 3 4 7 , 8 9 ⟶ 0 10 11 12 , 8 13 ⟶ 0 10 11 14 , 8 15 ⟶ 0 10 11 16 , 8 17 ⟶ 0 10 11 18 , 8 9 ⟶ 0 19 12 , 8 13 ⟶ 0 19 14 , 8 15 ⟶ 0 19 16 , 8 17 ⟶ 0 19 18 , 8 9 ⟶ 3 4 , 8 13 ⟶ 3 20 , 8 15 ⟶ 3 21 , 8 17 ⟶ 3 22 , 3 21 12 ⟶ 8 9 , 3 21 14 ⟶ 8 13 , 3 21 16 ⟶ 8 15 , 3 21 18 ⟶ 8 17 , 10 23 →= 1 , 10 24 →= 10 , 10 11 →= 19 , 5 23 →= 2 , 5 24 →= 5 , 5 11 →= 6 , 20 23 →= 4 , 20 24 →= 20 , 20 11 →= 21 , 13 23 →= 9 , 13 24 →= 13 , 13 11 →= 15 , 24 23 →= 23 , 24 24 →= 24 , 24 11 →= 11 , 14 23 →= 12 , 14 24 →= 14 , 14 11 →= 16 , 25 23 →= 26 , 25 24 →= 25 , 25 11 →= 27 , 10 23 2 →= 19 12 2 , 10 23 5 →= 19 12 5 , 10 23 6 →= 19 12 6 , 10 23 7 →= 19 12 7 , 5 23 2 →= 6 12 2 , 5 23 5 →= 6 12 5 , 5 23 6 →= 6 12 6 , 5 23 7 →= 6 12 7 , 20 23 2 →= 21 12 2 , 20 23 5 →= 21 12 5 , 20 23 6 →= 21 12 6 , 20 23 7 →= 21 12 7 , 13 23 2 →= 15 12 2 , 13 23 5 →= 15 12 5 , 13 23 6 →= 15 12 6 , 13 23 7 →= 15 12 7 , 24 23 2 →= 11 12 2 , 24 23 5 →= 11 12 5 , 24 23 6 →= 11 12 6 , 24 23 7 →= 11 12 7 , 14 23 2 →= 16 12 2 , 14 23 5 →= 16 12 5 , 14 23 6 →= 16 12 6 , 14 23 7 →= 16 12 7 , 25 23 2 →= 27 12 2 , 25 23 5 →= 27 12 5 , 25 23 6 →= 27 12 6 , 25 23 7 →= 27 12 7 , 1 2 →= 10 24 11 12 , 1 5 →= 10 24 11 14 , 1 6 →= 10 24 11 16 , 1 7 →= 10 24 11 18 , 2 2 →= 5 24 11 12 , 2 5 →= 5 24 11 14 , 2 6 →= 5 24 11 16 , 2 7 →= 5 24 11 18 , 4 2 →= 20 24 11 12 , 4 5 →= 20 24 11 14 , 4 6 →= 20 24 11 16 , 4 7 →= 20 24 11 18 , 9 2 →= 13 24 11 12 , 9 5 →= 13 24 11 14 , 9 6 →= 13 24 11 16 , 9 7 →= 13 24 11 18 , 23 2 →= 24 24 11 12 , 23 5 →= 24 24 11 14 , 23 6 →= 24 24 11 16 , 23 7 →= 24 24 11 18 , 12 2 →= 14 24 11 12 , 12 5 →= 14 24 11 14 , 12 6 →= 14 24 11 16 , 12 7 →= 14 24 11 18 , 26 2 →= 25 24 11 12 , 26 5 →= 25 24 11 14 , 26 6 →= 25 24 11 16 , 26 7 →= 25 24 11 18 , 19 16 12 →= 1 2 , 19 16 14 →= 1 5 , 19 16 16 →= 1 6 , 19 16 18 →= 1 7 , 6 16 12 →= 2 2 , 6 16 14 →= 2 5 , 6 16 16 →= 2 6 , 6 16 18 →= 2 7 , 21 16 12 →= 4 2 , 21 16 14 →= 4 5 , 21 16 16 →= 4 6 , 21 16 18 →= 4 7 , 15 16 12 →= 9 2 , 15 16 14 →= 9 5 , 15 16 16 →= 9 6 , 15 16 18 →= 9 7 , 11 16 12 →= 23 2 , 11 16 14 →= 23 5 , 11 16 16 →= 23 6 , 11 16 18 →= 23 7 , 16 16 12 →= 12 2 , 16 16 14 →= 12 5 , 16 16 16 →= 12 6 , 16 16 18 →= 12 7 , 27 16 12 →= 26 2 , 27 16 14 →= 26 5 , 27 16 16 →= 26 6 , 27 16 18 →= 26 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 9 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 11 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 11 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 7 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 9 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 9 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 7 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 26 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 27 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 10 ↦ 0, 24 ↦ 1, 5 ↦ 2, 11 ↦ 3, 6 ↦ 4, 20 ↦ 5, 13 ↦ 6, 23 ↦ 7, 14 ↦ 8, 16 ↦ 9, 25 ↦ 10, 2 ↦ 11, 12 ↦ 12, 7 ↦ 13, 18 ↦ 14 }, it remains to prove termination of the 35-rule system { 0 1 →= 0 , 2 1 →= 2 , 2 3 →= 4 , 5 1 →= 5 , 6 1 →= 6 , 1 7 →= 7 , 1 1 →= 1 , 1 3 →= 3 , 8 1 →= 8 , 8 3 →= 9 , 10 1 →= 10 , 2 7 11 →= 4 12 11 , 2 7 2 →= 4 12 2 , 2 7 4 →= 4 12 4 , 2 7 13 →= 4 12 13 , 1 7 11 →= 3 12 11 , 1 7 2 →= 3 12 2 , 1 7 4 →= 3 12 4 , 1 7 13 →= 3 12 13 , 8 7 11 →= 9 12 11 , 8 7 2 →= 9 12 2 , 8 7 4 →= 9 12 4 , 8 7 13 →= 9 12 13 , 11 11 →= 2 1 3 12 , 11 2 →= 2 1 3 8 , 11 4 →= 2 1 3 9 , 11 13 →= 2 1 3 14 , 12 11 →= 8 1 3 12 , 12 2 →= 8 1 3 8 , 12 4 →= 8 1 3 9 , 12 13 →= 8 1 3 14 , 3 9 12 →= 7 11 , 3 9 8 →= 7 2 , 3 9 9 →= 7 4 , 3 9 14 →= 7 13 } The system is trivially terminating.