/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 0 0 ⟶ 0 1 2 0 , 2 1 ⟶ 0 1 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 1 ↦ 2 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 0 0 ⟶ 0 1 2 0 , 2 1 ⟶ 0 2 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (0,↓) ↦ 1, (1,↓) ↦ 2, (2,↓) ↦ 3, (2,↑) ↦ 4 }, it remains to prove termination of the 8-rule system { 0 1 ⟶ 0 2 3 1 , 0 1 ⟶ 4 1 , 4 2 ⟶ 0 3 1 , 4 2 ⟶ 4 1 , 4 2 ⟶ 0 , 1 →= , 1 1 →= 1 2 3 1 , 3 2 →= 1 3 1 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (5,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (0,2) ↦ 3, (2,3) ↦ 4, (3,1) ↦ 5, (1,2) ↦ 6, (1,3) ↦ 7, (1,6) ↦ 8, (5,4) ↦ 9, (4,1) ↦ 10, (4,2) ↦ 11, (2,1) ↦ 12, (0,3) ↦ 13, (2,2) ↦ 14, (2,6) ↦ 15, (0,6) ↦ 16, (3,2) ↦ 17, (3,3) ↦ 18, (3,6) ↦ 19, (4,3) ↦ 20, (4,6) ↦ 21, (5,1) ↦ 22, (5,2) ↦ 23, (5,3) ↦ 24, (5,6) ↦ 25 }, it remains to prove termination of the 92-rule system { 0 1 2 ⟶ 0 3 4 5 2 , 0 1 6 ⟶ 0 3 4 5 6 , 0 1 7 ⟶ 0 3 4 5 7 , 0 1 8 ⟶ 0 3 4 5 8 , 0 1 2 ⟶ 9 10 2 , 0 1 6 ⟶ 9 10 6 , 0 1 7 ⟶ 9 10 7 , 0 1 8 ⟶ 9 10 8 , 9 11 12 ⟶ 0 13 5 2 , 9 11 14 ⟶ 0 13 5 6 , 9 11 4 ⟶ 0 13 5 7 , 9 11 15 ⟶ 0 13 5 8 , 9 11 12 ⟶ 9 10 2 , 9 11 14 ⟶ 9 10 6 , 9 11 4 ⟶ 9 10 7 , 9 11 15 ⟶ 9 10 8 , 9 11 12 ⟶ 0 1 , 9 11 14 ⟶ 0 3 , 9 11 4 ⟶ 0 13 , 9 11 15 ⟶ 0 16 , 1 2 →= 1 , 1 6 →= 3 , 1 7 →= 13 , 1 8 →= 16 , 2 2 →= 2 , 2 6 →= 6 , 2 7 →= 7 , 2 8 →= 8 , 12 2 →= 12 , 12 6 →= 14 , 12 7 →= 4 , 12 8 →= 15 , 5 2 →= 5 , 5 6 →= 17 , 5 7 →= 18 , 5 8 →= 19 , 10 2 →= 10 , 10 6 →= 11 , 10 7 →= 20 , 10 8 →= 21 , 22 2 →= 22 , 22 6 →= 23 , 22 7 →= 24 , 22 8 →= 25 , 1 2 2 →= 1 6 4 5 2 , 1 2 6 →= 1 6 4 5 6 , 1 2 7 →= 1 6 4 5 7 , 1 2 8 →= 1 6 4 5 8 , 2 2 2 →= 2 6 4 5 2 , 2 2 6 →= 2 6 4 5 6 , 2 2 7 →= 2 6 4 5 7 , 2 2 8 →= 2 6 4 5 8 , 12 2 2 →= 12 6 4 5 2 , 12 2 6 →= 12 6 4 5 6 , 12 2 7 →= 12 6 4 5 7 , 12 2 8 →= 12 6 4 5 8 , 5 2 2 →= 5 6 4 5 2 , 5 2 6 →= 5 6 4 5 6 , 5 2 7 →= 5 6 4 5 7 , 5 2 8 →= 5 6 4 5 8 , 10 2 2 →= 10 6 4 5 2 , 10 2 6 →= 10 6 4 5 6 , 10 2 7 →= 10 6 4 5 7 , 10 2 8 →= 10 6 4 5 8 , 22 2 2 →= 22 6 4 5 2 , 22 2 6 →= 22 6 4 5 6 , 22 2 7 →= 22 6 4 5 7 , 22 2 8 →= 22 6 4 5 8 , 13 17 12 →= 1 7 5 2 , 13 17 14 →= 1 7 5 6 , 13 17 4 →= 1 7 5 7 , 13 17 15 →= 1 7 5 8 , 7 17 12 →= 2 7 5 2 , 7 17 14 →= 2 7 5 6 , 7 17 4 →= 2 7 5 7 , 7 17 15 →= 2 7 5 8 , 4 17 12 →= 12 7 5 2 , 4 17 14 →= 12 7 5 6 , 4 17 4 →= 12 7 5 7 , 4 17 15 →= 12 7 5 8 , 18 17 12 →= 5 7 5 2 , 18 17 14 →= 5 7 5 6 , 18 17 4 →= 5 7 5 7 , 18 17 15 →= 5 7 5 8 , 20 17 12 →= 10 7 5 2 , 20 17 14 →= 10 7 5 6 , 20 17 4 →= 10 7 5 7 , 20 17 15 →= 10 7 5 8 , 24 17 12 →= 22 7 5 2 , 24 17 14 →= 22 7 5 6 , 24 17 4 →= 22 7 5 7 , 24 17 15 →= 22 7 5 8 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 5 ↦ 0, 6 ↦ 1, 17 ↦ 2, 7 ↦ 3, 18 ↦ 4, 1 ↦ 5, 2 ↦ 6, 4 ↦ 7, 8 ↦ 8, 12 ↦ 9, 10 ↦ 10, 22 ↦ 11 }, it remains to prove termination of the 30-rule system { 0 1 →= 2 , 0 3 →= 4 , 5 6 6 →= 5 1 7 0 6 , 5 6 1 →= 5 1 7 0 1 , 5 6 3 →= 5 1 7 0 3 , 5 6 8 →= 5 1 7 0 8 , 6 6 6 →= 6 1 7 0 6 , 6 6 1 →= 6 1 7 0 1 , 6 6 3 →= 6 1 7 0 3 , 6 6 8 →= 6 1 7 0 8 , 9 6 6 →= 9 1 7 0 6 , 9 6 1 →= 9 1 7 0 1 , 9 6 3 →= 9 1 7 0 3 , 9 6 8 →= 9 1 7 0 8 , 0 6 6 →= 0 1 7 0 6 , 0 6 1 →= 0 1 7 0 1 , 0 6 3 →= 0 1 7 0 3 , 0 6 8 →= 0 1 7 0 8 , 10 6 6 →= 10 1 7 0 6 , 10 6 1 →= 10 1 7 0 1 , 10 6 3 →= 10 1 7 0 3 , 10 6 8 →= 10 1 7 0 8 , 11 6 6 →= 11 1 7 0 6 , 11 6 1 →= 11 1 7 0 1 , 11 6 3 →= 11 1 7 0 3 , 11 6 8 →= 11 1 7 0 8 , 3 2 9 →= 6 3 0 6 , 3 2 7 →= 6 3 0 3 , 7 2 9 →= 9 3 0 6 , 7 2 7 →= 9 3 0 3 } The system is trivially terminating.