/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 0 0 ⟶ 0 1 0 1 , 1 1 1 1 ⟶ 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 0 0 ⟶ 1 0 1 0 , 1 1 1 1 ⟶ 0 } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (0,3) ↦ 2, (1,0) ↦ 3, (1,1) ↦ 4, (1,3) ↦ 5, (2,0) ↦ 6, (2,1) ↦ 7, (2,3) ↦ 8 }, it remains to prove termination of the 27-rule system { 0 0 ⟶ 0 , 0 1 ⟶ 1 , 0 2 ⟶ 2 , 3 0 ⟶ 3 , 3 1 ⟶ 4 , 3 2 ⟶ 5 , 6 0 ⟶ 6 , 6 1 ⟶ 7 , 6 2 ⟶ 8 , 0 0 0 ⟶ 1 3 1 3 0 , 0 0 1 ⟶ 1 3 1 3 1 , 0 0 2 ⟶ 1 3 1 3 2 , 3 0 0 ⟶ 4 3 1 3 0 , 3 0 1 ⟶ 4 3 1 3 1 , 3 0 2 ⟶ 4 3 1 3 2 , 6 0 0 ⟶ 7 3 1 3 0 , 6 0 1 ⟶ 7 3 1 3 1 , 6 0 2 ⟶ 7 3 1 3 2 , 1 4 4 4 3 ⟶ 0 0 , 1 4 4 4 4 ⟶ 0 1 , 1 4 4 4 5 ⟶ 0 2 , 4 4 4 4 3 ⟶ 3 0 , 4 4 4 4 4 ⟶ 3 1 , 4 4 4 4 5 ⟶ 3 2 , 7 4 4 4 3 ⟶ 6 0 , 7 4 4 4 4 ⟶ 6 1 , 7 4 4 4 5 ⟶ 6 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 1 ↦ 1, 4 ↦ 2, 0 ↦ 3, 2 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 1 ⟶ 2 , 0 3 3 ⟶ 2 0 1 0 3 , 0 3 1 ⟶ 2 0 1 0 1 , 0 3 4 ⟶ 2 0 1 0 4 , 1 2 2 2 0 ⟶ 3 3 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (3,↓) ↦ 1, (1,↓) ↦ 2, (0,↓) ↦ 3, (1,↑) ↦ 4, (4,↓) ↦ 5, (2,↓) ↦ 6 }, it remains to prove termination of the 14-rule system { 0 1 1 ⟶ 0 2 3 1 , 0 1 1 ⟶ 4 3 1 , 0 1 1 ⟶ 0 1 , 0 1 2 ⟶ 0 2 3 2 , 0 1 2 ⟶ 4 3 2 , 0 1 2 ⟶ 0 2 , 0 1 5 ⟶ 0 2 3 5 , 0 1 5 ⟶ 4 3 5 , 0 1 5 ⟶ 0 5 , 3 2 →= 6 , 3 1 1 →= 6 3 2 3 1 , 3 1 2 →= 6 3 2 3 2 , 3 1 5 →= 6 3 2 3 5 , 2 6 6 6 3 →= 1 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 5 ↦ 4, 6 ↦ 5 }, it remains to prove termination of the 11-rule system { 0 1 1 ⟶ 0 2 3 1 , 0 1 1 ⟶ 0 1 , 0 1 2 ⟶ 0 2 3 2 , 0 1 2 ⟶ 0 2 , 0 1 4 ⟶ 0 2 3 4 , 0 1 4 ⟶ 0 4 , 3 2 →= 5 , 3 1 1 →= 5 3 2 3 1 , 3 1 2 →= 5 3 2 3 2 , 3 1 4 →= 5 3 2 3 4 , 2 5 5 5 3 →= 1 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 2 ↦ 1, 5 ↦ 2, 1 ↦ 3, 4 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 1 →= 2 , 0 3 3 →= 2 0 1 0 3 , 0 3 1 →= 2 0 1 0 1 , 0 3 4 →= 2 0 1 0 4 , 1 2 2 2 0 →= 3 3 } The system is trivially terminating.