/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 2 0 0 2 , 1 ⟶ , 2 2 ⟶ 1 1 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↑) ↦ 2, (0,↓) ↦ 3, (2,↓) ↦ 4, (1,↑) ↦ 5 }, it remains to prove termination of the 10-rule system { 0 1 ⟶ 2 3 3 4 , 0 1 ⟶ 0 3 4 , 0 1 ⟶ 0 4 , 0 1 ⟶ 2 , 2 4 ⟶ 5 1 , 2 4 ⟶ 5 , 3 →= , 3 1 →= 4 3 3 4 , 1 →= , 4 4 →= 1 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 3 ↦ 2, 4 ↦ 3, 2 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 8-rule system { 0 1 ⟶ 0 2 3 , 0 1 ⟶ 0 3 , 4 3 ⟶ 5 1 , 4 3 ⟶ 5 , 2 →= , 2 1 →= 3 2 2 3 , 1 →= , 3 3 →= 1 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 6-rule system { 0 1 ⟶ 0 2 3 , 0 1 ⟶ 0 3 , 2 →= , 2 1 →= 3 2 2 3 , 1 →= , 3 3 →= 1 1 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (0,2) ↦ 3, (2,3) ↦ 4, (3,1) ↦ 5, (1,2) ↦ 6, (3,2) ↦ 7, (1,3) ↦ 8, (3,3) ↦ 9, (1,5) ↦ 10, (3,5) ↦ 11, (0,3) ↦ 12, (2,1) ↦ 13, (2,2) ↦ 14, (2,5) ↦ 15, (0,5) ↦ 16, (4,2) ↦ 17, (4,1) ↦ 18, (4,3) ↦ 19, (4,5) ↦ 20 }, it remains to prove termination of the 88-rule system { 0 1 2 ⟶ 0 3 4 5 , 0 1 6 ⟶ 0 3 4 7 , 0 1 8 ⟶ 0 3 4 9 , 0 1 10 ⟶ 0 3 4 11 , 0 1 2 ⟶ 0 12 5 , 0 1 6 ⟶ 0 12 7 , 0 1 8 ⟶ 0 12 9 , 0 1 10 ⟶ 0 12 11 , 3 13 →= 1 , 3 14 →= 3 , 3 4 →= 12 , 3 15 →= 16 , 6 13 →= 2 , 6 14 →= 6 , 6 4 →= 8 , 6 15 →= 10 , 14 13 →= 13 , 14 14 →= 14 , 14 4 →= 4 , 14 15 →= 15 , 7 13 →= 5 , 7 14 →= 7 , 7 4 →= 9 , 7 15 →= 11 , 17 13 →= 18 , 17 14 →= 17 , 17 4 →= 19 , 17 15 →= 20 , 3 13 2 →= 12 7 14 4 5 , 3 13 6 →= 12 7 14 4 7 , 3 13 8 →= 12 7 14 4 9 , 3 13 10 →= 12 7 14 4 11 , 6 13 2 →= 8 7 14 4 5 , 6 13 6 →= 8 7 14 4 7 , 6 13 8 →= 8 7 14 4 9 , 6 13 10 →= 8 7 14 4 11 , 14 13 2 →= 4 7 14 4 5 , 14 13 6 →= 4 7 14 4 7 , 14 13 8 →= 4 7 14 4 9 , 14 13 10 →= 4 7 14 4 11 , 7 13 2 →= 9 7 14 4 5 , 7 13 6 →= 9 7 14 4 7 , 7 13 8 →= 9 7 14 4 9 , 7 13 10 →= 9 7 14 4 11 , 17 13 2 →= 19 7 14 4 5 , 17 13 6 →= 19 7 14 4 7 , 17 13 8 →= 19 7 14 4 9 , 17 13 10 →= 19 7 14 4 11 , 1 2 →= 1 , 1 6 →= 3 , 1 8 →= 12 , 1 10 →= 16 , 2 2 →= 2 , 2 6 →= 6 , 2 8 →= 8 , 2 10 →= 10 , 13 2 →= 13 , 13 6 →= 14 , 13 8 →= 4 , 13 10 →= 15 , 5 2 →= 5 , 5 6 →= 7 , 5 8 →= 9 , 5 10 →= 11 , 18 2 →= 18 , 18 6 →= 17 , 18 8 →= 19 , 18 10 →= 20 , 12 9 5 →= 1 2 2 , 12 9 7 →= 1 2 6 , 12 9 9 →= 1 2 8 , 12 9 11 →= 1 2 10 , 8 9 5 →= 2 2 2 , 8 9 7 →= 2 2 6 , 8 9 9 →= 2 2 8 , 8 9 11 →= 2 2 10 , 4 9 5 →= 13 2 2 , 4 9 7 →= 13 2 6 , 4 9 9 →= 13 2 8 , 4 9 11 →= 13 2 10 , 9 9 5 →= 5 2 2 , 9 9 7 →= 5 2 6 , 9 9 9 →= 5 2 8 , 9 9 11 →= 5 2 10 , 19 9 5 →= 18 2 2 , 19 9 7 →= 18 2 6 , 19 9 9 →= 18 2 8 , 19 9 11 →= 18 2 10 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 14 ↦ 1, 6 ↦ 2, 4 ↦ 3, 8 ↦ 4, 13 ↦ 5, 15 ↦ 6, 7 ↦ 7, 9 ↦ 8, 17 ↦ 9, 2 ↦ 10, 5 ↦ 11, 10 ↦ 12, 11 ↦ 13, 1 ↦ 14, 18 ↦ 15 }, it remains to prove termination of the 37-rule system { 0 1 →= 0 , 2 1 →= 2 , 2 3 →= 4 , 1 5 →= 5 , 1 1 →= 1 , 1 3 →= 3 , 1 6 →= 6 , 7 1 →= 7 , 7 3 →= 8 , 9 1 →= 9 , 2 5 10 →= 4 7 1 3 11 , 2 5 2 →= 4 7 1 3 7 , 2 5 4 →= 4 7 1 3 8 , 2 5 12 →= 4 7 1 3 13 , 1 5 10 →= 3 7 1 3 11 , 1 5 2 →= 3 7 1 3 7 , 1 5 4 →= 3 7 1 3 8 , 1 5 12 →= 3 7 1 3 13 , 7 5 10 →= 8 7 1 3 11 , 7 5 2 →= 8 7 1 3 7 , 7 5 4 →= 8 7 1 3 8 , 7 5 12 →= 8 7 1 3 13 , 14 10 →= 14 , 10 10 →= 10 , 10 2 →= 2 , 10 4 →= 4 , 10 12 →= 12 , 5 10 →= 5 , 11 10 →= 11 , 11 2 →= 7 , 11 4 →= 8 , 11 12 →= 13 , 15 10 →= 15 , 3 8 11 →= 5 10 10 , 3 8 7 →= 5 10 2 , 3 8 8 →= 5 10 4 , 3 8 13 →= 5 10 12 } The system is trivially terminating.