/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 1 0 2 , 1 ⟶ , 2 2 ⟶ 1 1 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 1 0 ⟶ 2 0 1 , 1 ⟶ , 2 2 ⟶ 0 1 1 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (1,↑) ↦ 0, (0,↓) ↦ 1, (2,↑) ↦ 2, (1,↓) ↦ 3, (0,↑) ↦ 4, (2,↓) ↦ 5 }, it remains to prove termination of the 10-rule system { 0 1 ⟶ 2 1 3 , 0 1 ⟶ 4 3 , 0 1 ⟶ 0 , 2 5 ⟶ 4 3 3 , 2 5 ⟶ 0 3 , 2 5 ⟶ 0 , 1 →= , 3 1 →= 5 1 3 , 3 →= , 5 5 →= 1 3 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 5 ↦ 4 }, it remains to prove termination of the 8-rule system { 0 1 ⟶ 2 1 3 , 0 1 ⟶ 0 , 2 4 ⟶ 0 3 , 2 4 ⟶ 0 , 1 →= , 3 1 →= 4 1 3 , 3 →= , 4 4 →= 1 3 3 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (5,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (5,2) ↦ 3, (2,1) ↦ 4, (1,3) ↦ 5, (3,1) ↦ 6, (3,3) ↦ 7, (1,4) ↦ 8, (3,4) ↦ 9, (1,6) ↦ 10, (3,6) ↦ 11, (0,3) ↦ 12, (0,4) ↦ 13, (0,6) ↦ 14, (2,4) ↦ 15, (4,1) ↦ 16, (4,3) ↦ 17, (4,4) ↦ 18, (4,6) ↦ 19, (2,3) ↦ 20, (2,6) ↦ 21, (5,1) ↦ 22, (5,3) ↦ 23, (5,4) ↦ 24, (5,6) ↦ 25 }, it remains to prove termination of the 112-rule system { 0 1 2 ⟶ 3 4 5 6 , 0 1 5 ⟶ 3 4 5 7 , 0 1 8 ⟶ 3 4 5 9 , 0 1 10 ⟶ 3 4 5 11 , 0 1 2 ⟶ 0 1 , 0 1 5 ⟶ 0 12 , 0 1 8 ⟶ 0 13 , 0 1 10 ⟶ 0 14 , 3 15 16 ⟶ 0 12 6 , 3 15 17 ⟶ 0 12 7 , 3 15 18 ⟶ 0 12 9 , 3 15 19 ⟶ 0 12 11 , 3 15 16 ⟶ 0 1 , 3 15 17 ⟶ 0 12 , 3 15 18 ⟶ 0 13 , 3 15 19 ⟶ 0 14 , 1 2 →= 1 , 1 5 →= 12 , 1 8 →= 13 , 1 10 →= 14 , 2 2 →= 2 , 2 5 →= 5 , 2 8 →= 8 , 2 10 →= 10 , 4 2 →= 4 , 4 5 →= 20 , 4 8 →= 15 , 4 10 →= 21 , 6 2 →= 6 , 6 5 →= 7 , 6 8 →= 9 , 6 10 →= 11 , 16 2 →= 16 , 16 5 →= 17 , 16 8 →= 18 , 16 10 →= 19 , 22 2 →= 22 , 22 5 →= 23 , 22 8 →= 24 , 22 10 →= 25 , 12 6 2 →= 13 16 5 6 , 12 6 5 →= 13 16 5 7 , 12 6 8 →= 13 16 5 9 , 12 6 10 →= 13 16 5 11 , 5 6 2 →= 8 16 5 6 , 5 6 5 →= 8 16 5 7 , 5 6 8 →= 8 16 5 9 , 5 6 10 →= 8 16 5 11 , 20 6 2 →= 15 16 5 6 , 20 6 5 →= 15 16 5 7 , 20 6 8 →= 15 16 5 9 , 20 6 10 →= 15 16 5 11 , 7 6 2 →= 9 16 5 6 , 7 6 5 →= 9 16 5 7 , 7 6 8 →= 9 16 5 9 , 7 6 10 →= 9 16 5 11 , 17 6 2 →= 18 16 5 6 , 17 6 5 →= 18 16 5 7 , 17 6 8 →= 18 16 5 9 , 17 6 10 →= 18 16 5 11 , 23 6 2 →= 24 16 5 6 , 23 6 5 →= 24 16 5 7 , 23 6 8 →= 24 16 5 9 , 23 6 10 →= 24 16 5 11 , 12 6 →= 1 , 12 7 →= 12 , 12 9 →= 13 , 12 11 →= 14 , 5 6 →= 2 , 5 7 →= 5 , 5 9 →= 8 , 5 11 →= 10 , 20 6 →= 4 , 20 7 →= 20 , 20 9 →= 15 , 20 11 →= 21 , 7 6 →= 6 , 7 7 →= 7 , 7 9 →= 9 , 7 11 →= 11 , 17 6 →= 16 , 17 7 →= 17 , 17 9 →= 18 , 17 11 →= 19 , 23 6 →= 22 , 23 7 →= 23 , 23 9 →= 24 , 23 11 →= 25 , 13 18 16 →= 1 5 7 6 , 13 18 17 →= 1 5 7 7 , 13 18 18 →= 1 5 7 9 , 13 18 19 →= 1 5 7 11 , 8 18 16 →= 2 5 7 6 , 8 18 17 →= 2 5 7 7 , 8 18 18 →= 2 5 7 9 , 8 18 19 →= 2 5 7 11 , 15 18 16 →= 4 5 7 6 , 15 18 17 →= 4 5 7 7 , 15 18 18 →= 4 5 7 9 , 15 18 19 →= 4 5 7 11 , 9 18 16 →= 6 5 7 6 , 9 18 17 →= 6 5 7 7 , 9 18 18 →= 6 5 7 9 , 9 18 19 →= 6 5 7 11 , 18 18 16 →= 16 5 7 6 , 18 18 17 →= 16 5 7 7 , 18 18 18 →= 16 5 7 9 , 18 18 19 →= 16 5 7 11 , 24 18 16 →= 22 5 7 6 , 24 18 17 →= 22 5 7 7 , 24 18 18 →= 22 5 7 9 , 24 18 19 →= 22 5 7 11 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 16 ↦ 0, 5 ↦ 1, 17 ↦ 2, 8 ↦ 3, 18 ↦ 4, 6 ↦ 5, 2 ↦ 6, 7 ↦ 7, 9 ↦ 8, 10 ↦ 9, 11 ↦ 10, 12 ↦ 11, 20 ↦ 12, 23 ↦ 13 }, it remains to prove termination of the 29-rule system { 0 1 →= 2 , 0 3 →= 4 , 1 5 6 →= 3 0 1 5 , 1 5 1 →= 3 0 1 7 , 1 5 3 →= 3 0 1 8 , 1 5 9 →= 3 0 1 10 , 7 5 6 →= 8 0 1 5 , 7 5 1 →= 8 0 1 7 , 7 5 3 →= 8 0 1 8 , 7 5 9 →= 8 0 1 10 , 2 5 6 →= 4 0 1 5 , 2 5 1 →= 4 0 1 7 , 2 5 3 →= 4 0 1 8 , 2 5 9 →= 4 0 1 10 , 11 7 →= 11 , 1 5 →= 6 , 1 7 →= 1 , 1 8 →= 3 , 1 10 →= 9 , 12 7 →= 12 , 7 5 →= 5 , 7 7 →= 7 , 7 8 →= 8 , 7 10 →= 10 , 2 7 →= 2 , 2 8 →= 4 , 13 7 →= 13 , 3 4 0 →= 6 1 7 5 , 8 4 0 →= 5 1 7 5 } The system is trivially terminating.