/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 2 , 1 ⟶ , 2 2 ⟶ 1 1 0 0 2 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↑) ↦ 2, (2,↓) ↦ 3, (1,↑) ↦ 4, (0,↓) ↦ 5 }, it remains to prove termination of the 9-rule system { 0 1 ⟶ 2 , 2 3 ⟶ 4 1 5 5 3 , 2 3 ⟶ 4 5 5 3 , 2 3 ⟶ 0 5 3 , 2 3 ⟶ 0 3 , 5 →= , 5 1 →= 3 , 1 →= , 3 3 →= 1 1 5 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 5 ↦ 4 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 2 , 2 3 ⟶ 0 4 3 , 2 3 ⟶ 0 3 , 4 →= , 4 1 →= 3 , 1 →= , 3 3 →= 1 1 4 4 3 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (5,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (5,2) ↦ 3, (2,1) ↦ 4, (1,3) ↦ 5, (2,3) ↦ 6, (1,4) ↦ 7, (2,4) ↦ 8, (3,1) ↦ 9, (0,4) ↦ 10, (4,3) ↦ 11, (3,3) ↦ 12, (3,4) ↦ 13, (3,6) ↦ 14, (0,3) ↦ 15, (4,1) ↦ 16, (4,4) ↦ 17, (5,4) ↦ 18, (5,1) ↦ 19, (5,3) ↦ 20 }, it remains to prove termination of the 89-rule system { 0 1 2 ⟶ 3 4 , 0 1 5 ⟶ 3 6 , 0 1 7 ⟶ 3 8 , 3 6 9 ⟶ 0 10 11 9 , 3 6 12 ⟶ 0 10 11 12 , 3 6 13 ⟶ 0 10 11 13 , 3 6 14 ⟶ 0 10 11 14 , 3 6 9 ⟶ 0 15 9 , 3 6 12 ⟶ 0 15 12 , 3 6 13 ⟶ 0 15 13 , 3 6 14 ⟶ 0 15 14 , 10 16 →= 1 , 10 11 →= 15 , 10 17 →= 10 , 7 16 →= 2 , 7 11 →= 5 , 7 17 →= 7 , 8 16 →= 4 , 8 11 →= 6 , 8 17 →= 8 , 13 16 →= 9 , 13 11 →= 12 , 13 17 →= 13 , 17 16 →= 16 , 17 11 →= 11 , 17 17 →= 17 , 18 16 →= 19 , 18 11 →= 20 , 18 17 →= 18 , 10 16 2 →= 15 9 , 10 16 5 →= 15 12 , 10 16 7 →= 15 13 , 7 16 2 →= 5 9 , 7 16 5 →= 5 12 , 7 16 7 →= 5 13 , 8 16 2 →= 6 9 , 8 16 5 →= 6 12 , 8 16 7 →= 6 13 , 13 16 2 →= 12 9 , 13 16 5 →= 12 12 , 13 16 7 →= 12 13 , 17 16 2 →= 11 9 , 17 16 5 →= 11 12 , 17 16 7 →= 11 13 , 18 16 2 →= 20 9 , 18 16 5 →= 20 12 , 18 16 7 →= 20 13 , 1 2 →= 1 , 1 5 →= 15 , 1 7 →= 10 , 2 2 →= 2 , 2 5 →= 5 , 2 7 →= 7 , 4 2 →= 4 , 4 5 →= 6 , 4 7 →= 8 , 9 2 →= 9 , 9 5 →= 12 , 9 7 →= 13 , 16 2 →= 16 , 16 5 →= 11 , 16 7 →= 17 , 19 2 →= 19 , 19 5 →= 20 , 19 7 →= 18 , 15 12 9 →= 1 2 7 17 11 9 , 15 12 12 →= 1 2 7 17 11 12 , 15 12 13 →= 1 2 7 17 11 13 , 15 12 14 →= 1 2 7 17 11 14 , 5 12 9 →= 2 2 7 17 11 9 , 5 12 12 →= 2 2 7 17 11 12 , 5 12 13 →= 2 2 7 17 11 13 , 5 12 14 →= 2 2 7 17 11 14 , 6 12 9 →= 4 2 7 17 11 9 , 6 12 12 →= 4 2 7 17 11 12 , 6 12 13 →= 4 2 7 17 11 13 , 6 12 14 →= 4 2 7 17 11 14 , 12 12 9 →= 9 2 7 17 11 9 , 12 12 12 →= 9 2 7 17 11 12 , 12 12 13 →= 9 2 7 17 11 13 , 12 12 14 →= 9 2 7 17 11 14 , 11 12 9 →= 16 2 7 17 11 9 , 11 12 12 →= 16 2 7 17 11 12 , 11 12 13 →= 16 2 7 17 11 13 , 11 12 14 →= 16 2 7 17 11 14 , 20 12 9 →= 19 2 7 17 11 9 , 20 12 12 →= 19 2 7 17 11 12 , 20 12 13 →= 19 2 7 17 11 13 , 20 12 14 →= 19 2 7 17 11 14 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 10 ↦ 0, 17 ↦ 1, 7 ↦ 2, 11 ↦ 3, 5 ↦ 4, 8 ↦ 5, 13 ↦ 6, 12 ↦ 7, 16 ↦ 8, 18 ↦ 9, 2 ↦ 10, 9 ↦ 11, 1 ↦ 12, 4 ↦ 13, 19 ↦ 14, 14 ↦ 15 }, it remains to prove termination of the 33-rule system { 0 1 →= 0 , 2 3 →= 4 , 2 1 →= 2 , 5 1 →= 5 , 6 3 →= 7 , 6 1 →= 6 , 1 8 →= 8 , 1 3 →= 3 , 1 1 →= 1 , 9 1 →= 9 , 2 8 10 →= 4 11 , 2 8 4 →= 4 7 , 2 8 2 →= 4 6 , 6 8 10 →= 7 11 , 6 8 4 →= 7 7 , 6 8 2 →= 7 6 , 1 8 10 →= 3 11 , 1 8 4 →= 3 7 , 1 8 2 →= 3 6 , 12 10 →= 12 , 10 10 →= 10 , 10 4 →= 4 , 10 2 →= 2 , 13 10 →= 13 , 11 10 →= 11 , 11 4 →= 7 , 11 2 →= 6 , 8 10 →= 8 , 14 10 →= 14 , 3 7 11 →= 8 10 2 1 3 11 , 3 7 7 →= 8 10 2 1 3 7 , 3 7 6 →= 8 10 2 1 3 6 , 3 7 15 →= 8 10 2 1 3 15 } The system is trivially terminating.