/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 0 2 1 1 2 , 1 ⟶ , 2 2 ⟶ 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 1 0 ⟶ 2 1 1 2 0 , 1 ⟶ , 2 2 ⟶ 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (1,↑) ↦ 0, (0,↓) ↦ 1, (2,↑) ↦ 2, (1,↓) ↦ 3, (2,↓) ↦ 4, (0,↑) ↦ 5 }, it remains to prove termination of the 9-rule system { 0 1 ⟶ 2 3 3 4 1 , 0 1 ⟶ 0 3 4 1 , 0 1 ⟶ 0 4 1 , 0 1 ⟶ 2 1 , 2 4 ⟶ 5 , 1 →= , 3 1 →= 4 3 3 4 1 , 3 →= , 4 4 →= 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 3 ↦ 2, 4 ↦ 3, 2 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 0 2 3 1 , 0 1 ⟶ 0 3 1 , 4 3 ⟶ 5 , 1 →= , 2 1 →= 3 2 2 3 1 , 2 →= , 3 3 →= 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 6-rule system { 0 1 ⟶ 0 2 3 1 , 0 1 ⟶ 0 3 1 , 1 →= , 2 1 →= 3 2 2 3 1 , 2 →= , 3 3 →= 1 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (0,2) ↦ 3, (2,3) ↦ 4, (3,1) ↦ 5, (1,2) ↦ 6, (1,3) ↦ 7, (1,5) ↦ 8, (0,3) ↦ 9, (0,5) ↦ 10, (2,1) ↦ 11, (2,2) ↦ 12, (2,5) ↦ 13, (3,2) ↦ 14, (3,3) ↦ 15, (3,5) ↦ 16, (4,1) ↦ 17, (4,2) ↦ 18, (4,3) ↦ 19, (4,5) ↦ 20 }, it remains to prove termination of the 88-rule system { 0 1 2 ⟶ 0 3 4 5 2 , 0 1 6 ⟶ 0 3 4 5 6 , 0 1 7 ⟶ 0 3 4 5 7 , 0 1 8 ⟶ 0 3 4 5 8 , 0 1 2 ⟶ 0 9 5 2 , 0 1 6 ⟶ 0 9 5 6 , 0 1 7 ⟶ 0 9 5 7 , 0 1 8 ⟶ 0 9 5 8 , 1 2 →= 1 , 1 6 →= 3 , 1 7 →= 9 , 1 8 →= 10 , 2 2 →= 2 , 2 6 →= 6 , 2 7 →= 7 , 2 8 →= 8 , 11 2 →= 11 , 11 6 →= 12 , 11 7 →= 4 , 11 8 →= 13 , 5 2 →= 5 , 5 6 →= 14 , 5 7 →= 15 , 5 8 →= 16 , 17 2 →= 17 , 17 6 →= 18 , 17 7 →= 19 , 17 8 →= 20 , 3 11 2 →= 9 14 12 4 5 2 , 3 11 6 →= 9 14 12 4 5 6 , 3 11 7 →= 9 14 12 4 5 7 , 3 11 8 →= 9 14 12 4 5 8 , 6 11 2 →= 7 14 12 4 5 2 , 6 11 6 →= 7 14 12 4 5 6 , 6 11 7 →= 7 14 12 4 5 7 , 6 11 8 →= 7 14 12 4 5 8 , 12 11 2 →= 4 14 12 4 5 2 , 12 11 6 →= 4 14 12 4 5 6 , 12 11 7 →= 4 14 12 4 5 7 , 12 11 8 →= 4 14 12 4 5 8 , 14 11 2 →= 15 14 12 4 5 2 , 14 11 6 →= 15 14 12 4 5 6 , 14 11 7 →= 15 14 12 4 5 7 , 14 11 8 →= 15 14 12 4 5 8 , 18 11 2 →= 19 14 12 4 5 2 , 18 11 6 →= 19 14 12 4 5 6 , 18 11 7 →= 19 14 12 4 5 7 , 18 11 8 →= 19 14 12 4 5 8 , 3 11 →= 1 , 3 12 →= 3 , 3 4 →= 9 , 3 13 →= 10 , 6 11 →= 2 , 6 12 →= 6 , 6 4 →= 7 , 6 13 →= 8 , 12 11 →= 11 , 12 12 →= 12 , 12 4 →= 4 , 12 13 →= 13 , 14 11 →= 5 , 14 12 →= 14 , 14 4 →= 15 , 14 13 →= 16 , 18 11 →= 17 , 18 12 →= 18 , 18 4 →= 19 , 18 13 →= 20 , 9 15 5 →= 1 2 , 9 15 14 →= 1 6 , 9 15 15 →= 1 7 , 9 15 16 →= 1 8 , 7 15 5 →= 2 2 , 7 15 14 →= 2 6 , 7 15 15 →= 2 7 , 7 15 16 →= 2 8 , 4 15 5 →= 11 2 , 4 15 14 →= 11 6 , 4 15 15 →= 11 7 , 4 15 16 →= 11 8 , 15 15 5 →= 5 2 , 15 15 14 →= 5 6 , 15 15 15 →= 5 7 , 15 15 16 →= 5 8 , 19 15 5 →= 17 2 , 19 15 14 →= 17 6 , 19 15 15 →= 17 7 , 19 15 16 →= 17 8 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 1 ↦ 0, 2 ↦ 1, 6 ↦ 2, 7 ↦ 3, 8 ↦ 4, 11 ↦ 5, 5 ↦ 6, 14 ↦ 7, 15 ↦ 8, 16 ↦ 9, 17 ↦ 10, 12 ↦ 11, 4 ↦ 12, 3 ↦ 13, 13 ↦ 14, 18 ↦ 15 }, it remains to prove termination of the 37-rule system { 0 1 →= 0 , 1 1 →= 1 , 1 2 →= 2 , 1 3 →= 3 , 1 4 →= 4 , 5 1 →= 5 , 6 1 →= 6 , 6 2 →= 7 , 6 3 →= 8 , 6 4 →= 9 , 10 1 →= 10 , 2 5 1 →= 3 7 11 12 6 1 , 2 5 2 →= 3 7 11 12 6 2 , 2 5 3 →= 3 7 11 12 6 3 , 2 5 4 →= 3 7 11 12 6 4 , 11 5 1 →= 12 7 11 12 6 1 , 11 5 2 →= 12 7 11 12 6 2 , 11 5 3 →= 12 7 11 12 6 3 , 11 5 4 →= 12 7 11 12 6 4 , 7 5 1 →= 8 7 11 12 6 1 , 7 5 2 →= 8 7 11 12 6 2 , 7 5 3 →= 8 7 11 12 6 3 , 7 5 4 →= 8 7 11 12 6 4 , 13 11 →= 13 , 2 11 →= 2 , 2 12 →= 3 , 11 5 →= 5 , 11 11 →= 11 , 11 12 →= 12 , 11 14 →= 14 , 7 11 →= 7 , 7 12 →= 8 , 15 11 →= 15 , 12 8 6 →= 5 1 , 12 8 7 →= 5 2 , 12 8 8 →= 5 3 , 12 8 9 →= 5 4 } The system is trivially terminating.