/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 0 1 ⟶ 2 1 2 0 , 2 2 ⟶ 2 1 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 1 0 ⟶ 0 2 1 2 , 2 2 ⟶ 0 1 2 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (1,↑) ↦ 0, (0,↓) ↦ 1, (0,↑) ↦ 2, (2,↓) ↦ 3, (1,↓) ↦ 4, (2,↑) ↦ 5 }, it remains to prove termination of the 9-rule system { 0 1 ⟶ 2 3 4 3 , 0 1 ⟶ 5 4 3 , 0 1 ⟶ 0 3 , 0 1 ⟶ 5 , 5 3 ⟶ 2 4 3 , 5 3 ⟶ 0 3 , 1 →= , 4 1 →= 1 3 4 3 , 3 3 →= 1 4 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 5 ↦ 2, 4 ↦ 3, 3 ↦ 4 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 2 3 4 , 0 1 ⟶ 0 4 , 0 1 ⟶ 2 , 2 4 ⟶ 0 4 , 1 →= , 3 1 →= 1 4 3 4 , 4 4 →= 1 3 4 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (5,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (5,2) ↦ 3, (2,3) ↦ 4, (3,4) ↦ 5, (4,1) ↦ 6, (1,3) ↦ 7, (4,3) ↦ 8, (1,4) ↦ 9, (4,4) ↦ 10, (0,4) ↦ 11, (2,1) ↦ 12, (2,4) ↦ 13, (4,6) ↦ 14, (0,3) ↦ 15, (3,1) ↦ 16, (3,3) ↦ 17, (5,1) ↦ 18, (5,3) ↦ 19, (5,4) ↦ 20 }, it remains to prove termination of the 73-rule system { 0 1 2 ⟶ 3 4 5 6 , 0 1 7 ⟶ 3 4 5 8 , 0 1 9 ⟶ 3 4 5 10 , 0 1 2 ⟶ 0 11 6 , 0 1 7 ⟶ 0 11 8 , 0 1 9 ⟶ 0 11 10 , 0 1 2 ⟶ 3 12 , 0 1 7 ⟶ 3 4 , 0 1 9 ⟶ 3 13 , 3 13 6 ⟶ 0 11 6 , 3 13 8 ⟶ 0 11 8 , 3 13 10 ⟶ 0 11 10 , 3 13 14 ⟶ 0 11 14 , 1 2 →= 1 , 1 7 →= 15 , 1 9 →= 11 , 2 2 →= 2 , 2 7 →= 7 , 2 9 →= 9 , 12 2 →= 12 , 12 7 →= 4 , 12 9 →= 13 , 16 2 →= 16 , 16 7 →= 17 , 16 9 →= 5 , 6 2 →= 6 , 6 7 →= 8 , 6 9 →= 10 , 18 2 →= 18 , 18 7 →= 19 , 18 9 →= 20 , 15 16 2 →= 1 9 8 5 6 , 15 16 7 →= 1 9 8 5 8 , 15 16 9 →= 1 9 8 5 10 , 7 16 2 →= 2 9 8 5 6 , 7 16 7 →= 2 9 8 5 8 , 7 16 9 →= 2 9 8 5 10 , 4 16 2 →= 12 9 8 5 6 , 4 16 7 →= 12 9 8 5 8 , 4 16 9 →= 12 9 8 5 10 , 17 16 2 →= 16 9 8 5 6 , 17 16 7 →= 16 9 8 5 8 , 17 16 9 →= 16 9 8 5 10 , 8 16 2 →= 6 9 8 5 6 , 8 16 7 →= 6 9 8 5 8 , 8 16 9 →= 6 9 8 5 10 , 19 16 2 →= 18 9 8 5 6 , 19 16 7 →= 18 9 8 5 8 , 19 16 9 →= 18 9 8 5 10 , 11 10 6 →= 1 7 5 6 , 11 10 8 →= 1 7 5 8 , 11 10 10 →= 1 7 5 10 , 11 10 14 →= 1 7 5 14 , 9 10 6 →= 2 7 5 6 , 9 10 8 →= 2 7 5 8 , 9 10 10 →= 2 7 5 10 , 9 10 14 →= 2 7 5 14 , 13 10 6 →= 12 7 5 6 , 13 10 8 →= 12 7 5 8 , 13 10 10 →= 12 7 5 10 , 13 10 14 →= 12 7 5 14 , 5 10 6 →= 16 7 5 6 , 5 10 8 →= 16 7 5 8 , 5 10 10 →= 16 7 5 10 , 5 10 14 →= 16 7 5 14 , 10 10 6 →= 6 7 5 6 , 10 10 8 →= 6 7 5 8 , 10 10 10 →= 6 7 5 10 , 10 10 14 →= 6 7 5 14 , 20 10 6 →= 18 7 5 6 , 20 10 8 →= 18 7 5 8 , 20 10 10 →= 18 7 5 10 , 20 10 14 →= 18 7 5 14 } Applying sparse untiling TROCU(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7, 8 ↦ 8, 9 ↦ 9, 10 ↦ 10, 11 ↦ 11, 12 ↦ 12, 13 ↦ 13, 15 ↦ 14, 16 ↦ 15, 17 ↦ 16, 18 ↦ 17, 19 ↦ 18, 20 ↦ 19 }, it remains to prove termination of the 66-rule system { 0 1 2 ⟶ 3 4 5 6 , 0 1 7 ⟶ 3 4 5 8 , 0 1 9 ⟶ 3 4 5 10 , 0 1 2 ⟶ 0 11 6 , 0 1 7 ⟶ 0 11 8 , 0 1 9 ⟶ 0 11 10 , 0 1 2 ⟶ 3 12 , 0 1 7 ⟶ 3 4 , 0 1 9 ⟶ 3 13 , 3 13 6 ⟶ 0 11 6 , 3 13 8 ⟶ 0 11 8 , 3 13 10 ⟶ 0 11 10 , 1 2 →= 1 , 1 7 →= 14 , 1 9 →= 11 , 2 2 →= 2 , 2 7 →= 7 , 2 9 →= 9 , 12 2 →= 12 , 12 7 →= 4 , 12 9 →= 13 , 15 2 →= 15 , 15 7 →= 16 , 15 9 →= 5 , 6 2 →= 6 , 6 7 →= 8 , 6 9 →= 10 , 17 2 →= 17 , 17 7 →= 18 , 17 9 →= 19 , 14 15 2 →= 1 9 8 5 6 , 14 15 7 →= 1 9 8 5 8 , 14 15 9 →= 1 9 8 5 10 , 7 15 2 →= 2 9 8 5 6 , 7 15 7 →= 2 9 8 5 8 , 7 15 9 →= 2 9 8 5 10 , 4 15 2 →= 12 9 8 5 6 , 4 15 7 →= 12 9 8 5 8 , 4 15 9 →= 12 9 8 5 10 , 16 15 2 →= 15 9 8 5 6 , 16 15 7 →= 15 9 8 5 8 , 16 15 9 →= 15 9 8 5 10 , 8 15 2 →= 6 9 8 5 6 , 8 15 7 →= 6 9 8 5 8 , 8 15 9 →= 6 9 8 5 10 , 18 15 2 →= 17 9 8 5 6 , 18 15 7 →= 17 9 8 5 8 , 18 15 9 →= 17 9 8 5 10 , 11 10 6 →= 1 7 5 6 , 11 10 8 →= 1 7 5 8 , 11 10 10 →= 1 7 5 10 , 9 10 6 →= 2 7 5 6 , 9 10 8 →= 2 7 5 8 , 9 10 10 →= 2 7 5 10 , 13 10 6 →= 12 7 5 6 , 13 10 8 →= 12 7 5 8 , 13 10 10 →= 12 7 5 10 , 5 10 6 →= 15 7 5 6 , 5 10 8 →= 15 7 5 8 , 5 10 10 →= 15 7 5 10 , 10 10 6 →= 6 7 5 6 , 10 10 8 →= 6 7 5 8 , 10 10 10 →= 6 7 5 10 , 19 10 6 →= 17 7 5 6 , 19 10 8 →= 17 7 5 8 , 19 10 10 →= 17 7 5 10 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 1 ↦ 0, 2 ↦ 1, 7 ↦ 2, 14 ↦ 3, 9 ↦ 4, 12 ↦ 5, 4 ↦ 6, 15 ↦ 7, 16 ↦ 8, 6 ↦ 9, 8 ↦ 10, 10 ↦ 11, 17 ↦ 12, 18 ↦ 13, 5 ↦ 14 }, it remains to prove termination of the 35-rule system { 0 1 →= 0 , 0 2 →= 3 , 1 1 →= 1 , 1 2 →= 2 , 1 4 →= 4 , 5 1 →= 5 , 5 2 →= 6 , 7 1 →= 7 , 7 2 →= 8 , 9 1 →= 9 , 9 2 →= 10 , 9 4 →= 11 , 12 1 →= 12 , 12 2 →= 13 , 3 7 1 →= 0 4 10 14 9 , 3 7 2 →= 0 4 10 14 10 , 3 7 4 →= 0 4 10 14 11 , 2 7 1 →= 1 4 10 14 9 , 2 7 2 →= 1 4 10 14 10 , 2 7 4 →= 1 4 10 14 11 , 6 7 1 →= 5 4 10 14 9 , 6 7 2 →= 5 4 10 14 10 , 6 7 4 →= 5 4 10 14 11 , 8 7 1 →= 7 4 10 14 9 , 8 7 2 →= 7 4 10 14 10 , 8 7 4 →= 7 4 10 14 11 , 10 7 1 →= 9 4 10 14 9 , 10 7 2 →= 9 4 10 14 10 , 10 7 4 →= 9 4 10 14 11 , 13 7 1 →= 12 4 10 14 9 , 13 7 2 →= 12 4 10 14 10 , 13 7 4 →= 12 4 10 14 11 , 14 11 9 →= 7 2 14 9 , 14 11 10 →= 7 2 14 10 , 14 11 11 →= 7 2 14 11 } The system is trivially terminating.