/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 5-rule system { 0 ⟶ , 0 0 ⟶ 1 2 , 1 ⟶ , 2 ⟶ , 2 1 ⟶ 0 1 2 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (0,↓) ↦ 1, (1,↑) ↦ 2, (2,↓) ↦ 3, (2,↑) ↦ 4, (1,↓) ↦ 5 }, it remains to prove termination of the 10-rule system { 0 1 ⟶ 2 3 , 0 1 ⟶ 4 , 4 5 ⟶ 0 5 3 , 4 5 ⟶ 2 3 , 4 5 ⟶ 4 , 1 →= , 1 1 →= 5 3 , 5 →= , 3 →= , 3 5 →= 1 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 4 ↦ 2, 5 ↦ 3, 3 ↦ 4 }, it remains to prove termination of the 8-rule system { 0 1 ⟶ 2 , 2 3 ⟶ 0 3 4 , 2 3 ⟶ 2 , 1 →= , 1 1 →= 3 4 , 3 →= , 4 →= , 4 3 →= 1 3 4 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (5,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (5,2) ↦ 3, (2,1) ↦ 4, (1,3) ↦ 5, (2,3) ↦ 6, (1,4) ↦ 7, (2,4) ↦ 8, (1,6) ↦ 9, (2,6) ↦ 10, (3,1) ↦ 11, (0,3) ↦ 12, (3,4) ↦ 13, (4,1) ↦ 14, (3,3) ↦ 15, (4,3) ↦ 16, (4,4) ↦ 17, (3,6) ↦ 18, (4,6) ↦ 19, (0,4) ↦ 20, (0,6) ↦ 21, (5,1) ↦ 22, (5,3) ↦ 23, (5,4) ↦ 24, (5,6) ↦ 25 }, it remains to prove termination of the 132-rule system { 0 1 2 ⟶ 3 4 , 0 1 5 ⟶ 3 6 , 0 1 7 ⟶ 3 8 , 0 1 9 ⟶ 3 10 , 3 6 11 ⟶ 0 12 13 14 , 3 6 15 ⟶ 0 12 13 16 , 3 6 13 ⟶ 0 12 13 17 , 3 6 18 ⟶ 0 12 13 19 , 3 6 11 ⟶ 3 4 , 3 6 15 ⟶ 3 6 , 3 6 13 ⟶ 3 8 , 3 6 18 ⟶ 3 10 , 1 2 →= 1 , 1 5 →= 12 , 1 7 →= 20 , 1 9 →= 21 , 2 2 →= 2 , 2 5 →= 5 , 2 7 →= 7 , 2 9 →= 9 , 4 2 →= 4 , 4 5 →= 6 , 4 7 →= 8 , 4 9 →= 10 , 11 2 →= 11 , 11 5 →= 15 , 11 7 →= 13 , 11 9 →= 18 , 14 2 →= 14 , 14 5 →= 16 , 14 7 →= 17 , 14 9 →= 19 , 22 2 →= 22 , 22 5 →= 23 , 22 7 →= 24 , 22 9 →= 25 , 1 2 2 →= 12 13 14 , 1 2 5 →= 12 13 16 , 1 2 7 →= 12 13 17 , 1 2 9 →= 12 13 19 , 2 2 2 →= 5 13 14 , 2 2 5 →= 5 13 16 , 2 2 7 →= 5 13 17 , 2 2 9 →= 5 13 19 , 4 2 2 →= 6 13 14 , 4 2 5 →= 6 13 16 , 4 2 7 →= 6 13 17 , 4 2 9 →= 6 13 19 , 11 2 2 →= 15 13 14 , 11 2 5 →= 15 13 16 , 11 2 7 →= 15 13 17 , 11 2 9 →= 15 13 19 , 14 2 2 →= 16 13 14 , 14 2 5 →= 16 13 16 , 14 2 7 →= 16 13 17 , 14 2 9 →= 16 13 19 , 22 2 2 →= 23 13 14 , 22 2 5 →= 23 13 16 , 22 2 7 →= 23 13 17 , 22 2 9 →= 23 13 19 , 12 11 →= 1 , 12 15 →= 12 , 12 13 →= 20 , 12 18 →= 21 , 5 11 →= 2 , 5 15 →= 5 , 5 13 →= 7 , 5 18 →= 9 , 6 11 →= 4 , 6 15 →= 6 , 6 13 →= 8 , 6 18 →= 10 , 15 11 →= 11 , 15 15 →= 15 , 15 13 →= 13 , 15 18 →= 18 , 16 11 →= 14 , 16 15 →= 16 , 16 13 →= 17 , 16 18 →= 19 , 23 11 →= 22 , 23 15 →= 23 , 23 13 →= 24 , 23 18 →= 25 , 20 14 →= 1 , 20 16 →= 12 , 20 17 →= 20 , 20 19 →= 21 , 7 14 →= 2 , 7 16 →= 5 , 7 17 →= 7 , 7 19 →= 9 , 8 14 →= 4 , 8 16 →= 6 , 8 17 →= 8 , 8 19 →= 10 , 13 14 →= 11 , 13 16 →= 15 , 13 17 →= 13 , 13 19 →= 18 , 17 14 →= 14 , 17 16 →= 16 , 17 17 →= 17 , 17 19 →= 19 , 24 14 →= 22 , 24 16 →= 23 , 24 17 →= 24 , 24 19 →= 25 , 20 16 11 →= 1 5 13 14 , 20 16 15 →= 1 5 13 16 , 20 16 13 →= 1 5 13 17 , 20 16 18 →= 1 5 13 19 , 7 16 11 →= 2 5 13 14 , 7 16 15 →= 2 5 13 16 , 7 16 13 →= 2 5 13 17 , 7 16 18 →= 2 5 13 19 , 8 16 11 →= 4 5 13 14 , 8 16 15 →= 4 5 13 16 , 8 16 13 →= 4 5 13 17 , 8 16 18 →= 4 5 13 19 , 13 16 11 →= 11 5 13 14 , 13 16 15 →= 11 5 13 16 , 13 16 13 →= 11 5 13 17 , 13 16 18 →= 11 5 13 19 , 17 16 11 →= 14 5 13 14 , 17 16 15 →= 14 5 13 16 , 17 16 13 →= 14 5 13 17 , 17 16 18 →= 14 5 13 19 , 24 16 11 →= 22 5 13 14 , 24 16 15 →= 22 5 13 16 , 24 16 13 →= 22 5 13 17 , 24 16 18 →= 22 5 13 19 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 11 ↦ 0, 5 ↦ 1, 15 ↦ 2, 14 ↦ 3, 16 ↦ 4, 2 ↦ 5, 13 ↦ 6, 7 ↦ 7, 20 ↦ 8, 17 ↦ 9, 8 ↦ 10, 19 ↦ 11, 18 ↦ 12, 24 ↦ 13 }, it remains to prove termination of the 31-rule system { 0 1 →= 2 , 3 1 →= 4 , 0 5 1 →= 2 6 4 , 3 5 1 →= 4 6 4 , 1 0 →= 5 , 1 6 →= 7 , 8 9 →= 8 , 7 3 →= 5 , 7 9 →= 7 , 10 9 →= 10 , 6 3 →= 0 , 6 4 →= 2 , 6 9 →= 6 , 6 11 →= 12 , 9 3 →= 3 , 9 4 →= 4 , 9 9 →= 9 , 9 11 →= 11 , 13 9 →= 13 , 7 4 0 →= 5 1 6 3 , 7 4 2 →= 5 1 6 4 , 7 4 6 →= 5 1 6 9 , 7 4 12 →= 5 1 6 11 , 6 4 0 →= 0 1 6 3 , 6 4 2 →= 0 1 6 4 , 6 4 6 →= 0 1 6 9 , 6 4 12 →= 0 1 6 11 , 9 4 0 →= 3 1 6 3 , 9 4 2 →= 3 1 6 4 , 9 4 6 →= 3 1 6 9 , 9 4 12 →= 3 1 6 11 } The system is trivially terminating.