/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 ⟶ , 0 1 ⟶ 2 1 2 1 , 1 ⟶ 0 0 , 2 2 ⟶ } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↑) ↦ 2, (2,↓) ↦ 3, (1,↑) ↦ 4, (0,↓) ↦ 5 }, it remains to prove termination of the 9-rule system { 0 1 ⟶ 2 1 3 1 , 0 1 ⟶ 4 3 1 , 0 1 ⟶ 2 1 , 4 ⟶ 0 5 , 4 ⟶ 0 , 5 →= , 5 1 →= 3 1 3 1 , 1 →= 5 5 , 3 3 →= } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 4 ↦ 2, 3 ↦ 3, 5 ↦ 4 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 2 3 1 , 2 ⟶ 0 4 , 2 ⟶ 0 , 4 →= , 4 1 →= 3 1 3 1 , 1 →= 4 4 , 3 3 →= } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (5,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (5,2) ↦ 3, (2,3) ↦ 4, (3,1) ↦ 5, (1,3) ↦ 6, (1,4) ↦ 7, (1,6) ↦ 8, (2,1) ↦ 9, (0,4) ↦ 10, (4,1) ↦ 11, (4,3) ↦ 12, (2,4) ↦ 13, (4,4) ↦ 14, (2,6) ↦ 15, (4,6) ↦ 16, (0,3) ↦ 17, (0,6) ↦ 18, (3,4) ↦ 19, (3,3) ↦ 20, (3,6) ↦ 21, (5,4) ↦ 22, (5,1) ↦ 23, (5,3) ↦ 24, (5,6) ↦ 25 }, it remains to prove termination of the 108-rule system { 0 1 2 ⟶ 3 4 5 2 , 0 1 6 ⟶ 3 4 5 6 , 0 1 7 ⟶ 3 4 5 7 , 0 1 8 ⟶ 3 4 5 8 , 3 9 ⟶ 0 10 11 , 3 4 ⟶ 0 10 12 , 3 13 ⟶ 0 10 14 , 3 15 ⟶ 0 10 16 , 3 9 ⟶ 0 1 , 3 4 ⟶ 0 17 , 3 13 ⟶ 0 10 , 3 15 ⟶ 0 18 , 10 11 →= 1 , 10 12 →= 17 , 10 14 →= 10 , 10 16 →= 18 , 7 11 →= 2 , 7 12 →= 6 , 7 14 →= 7 , 7 16 →= 8 , 13 11 →= 9 , 13 12 →= 4 , 13 14 →= 13 , 13 16 →= 15 , 19 11 →= 5 , 19 12 →= 20 , 19 14 →= 19 , 19 16 →= 21 , 14 11 →= 11 , 14 12 →= 12 , 14 14 →= 14 , 14 16 →= 16 , 22 11 →= 23 , 22 12 →= 24 , 22 14 →= 22 , 22 16 →= 25 , 10 11 2 →= 17 5 6 5 2 , 10 11 6 →= 17 5 6 5 6 , 10 11 7 →= 17 5 6 5 7 , 10 11 8 →= 17 5 6 5 8 , 7 11 2 →= 6 5 6 5 2 , 7 11 6 →= 6 5 6 5 6 , 7 11 7 →= 6 5 6 5 7 , 7 11 8 →= 6 5 6 5 8 , 13 11 2 →= 4 5 6 5 2 , 13 11 6 →= 4 5 6 5 6 , 13 11 7 →= 4 5 6 5 7 , 13 11 8 →= 4 5 6 5 8 , 19 11 2 →= 20 5 6 5 2 , 19 11 6 →= 20 5 6 5 6 , 19 11 7 →= 20 5 6 5 7 , 19 11 8 →= 20 5 6 5 8 , 14 11 2 →= 12 5 6 5 2 , 14 11 6 →= 12 5 6 5 6 , 14 11 7 →= 12 5 6 5 7 , 14 11 8 →= 12 5 6 5 8 , 22 11 2 →= 24 5 6 5 2 , 22 11 6 →= 24 5 6 5 6 , 22 11 7 →= 24 5 6 5 7 , 22 11 8 →= 24 5 6 5 8 , 1 2 →= 10 14 11 , 1 6 →= 10 14 12 , 1 7 →= 10 14 14 , 1 8 →= 10 14 16 , 2 2 →= 7 14 11 , 2 6 →= 7 14 12 , 2 7 →= 7 14 14 , 2 8 →= 7 14 16 , 9 2 →= 13 14 11 , 9 6 →= 13 14 12 , 9 7 →= 13 14 14 , 9 8 →= 13 14 16 , 5 2 →= 19 14 11 , 5 6 →= 19 14 12 , 5 7 →= 19 14 14 , 5 8 →= 19 14 16 , 11 2 →= 14 14 11 , 11 6 →= 14 14 12 , 11 7 →= 14 14 14 , 11 8 →= 14 14 16 , 23 2 →= 22 14 11 , 23 6 →= 22 14 12 , 23 7 →= 22 14 14 , 23 8 →= 22 14 16 , 17 20 5 →= 1 , 17 20 20 →= 17 , 17 20 19 →= 10 , 17 20 21 →= 18 , 6 20 5 →= 2 , 6 20 20 →= 6 , 6 20 19 →= 7 , 6 20 21 →= 8 , 4 20 5 →= 9 , 4 20 20 →= 4 , 4 20 19 →= 13 , 4 20 21 →= 15 , 20 20 5 →= 5 , 20 20 20 →= 20 , 20 20 19 →= 19 , 20 20 21 →= 21 , 12 20 5 →= 11 , 12 20 20 →= 12 , 12 20 19 →= 14 , 12 20 21 →= 16 , 24 20 5 →= 23 , 24 20 20 →= 24 , 24 20 19 →= 22 , 24 20 21 →= 25 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 10 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 6 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 4 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 5 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 21 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 22 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 23 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 24 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 25 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 10 ↦ 0, 14 ↦ 1, 7 ↦ 2, 13 ↦ 3, 19 ↦ 4, 12 ↦ 5, 20 ↦ 6, 11 ↦ 7, 16 ↦ 8, 22 ↦ 9, 2 ↦ 10, 5 ↦ 11, 6 ↦ 12, 8 ↦ 13 }, it remains to prove termination of the 22-rule system { 0 1 →= 0 , 2 1 →= 2 , 3 1 →= 3 , 4 5 →= 6 , 4 1 →= 4 , 1 7 →= 7 , 1 5 →= 5 , 1 1 →= 1 , 1 8 →= 8 , 9 1 →= 9 , 4 7 10 →= 6 11 12 11 10 , 4 7 12 →= 6 11 12 11 12 , 4 7 2 →= 6 11 12 11 2 , 4 7 13 →= 6 11 12 11 13 , 1 7 10 →= 5 11 12 11 10 , 1 7 12 →= 5 11 12 11 12 , 1 7 2 →= 5 11 12 11 2 , 1 7 13 →= 5 11 12 11 13 , 11 10 →= 4 1 7 , 11 12 →= 4 1 5 , 12 6 11 →= 10 , 5 6 11 →= 7 } The system is trivially terminating.