/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 0 1 ⟶ 2 1 2 1 2 0 , 2 2 ⟶ 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 3-rule system { 0 ⟶ , 1 0 ⟶ 0 2 1 2 1 2 , 2 2 ⟶ 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (1,↑) ↦ 0, (0,↓) ↦ 1, (0,↑) ↦ 2, (2,↓) ↦ 3, (1,↓) ↦ 4, (2,↑) ↦ 5 }, it remains to prove termination of the 10-rule system { 0 1 ⟶ 2 3 4 3 4 3 , 0 1 ⟶ 5 4 3 4 3 , 0 1 ⟶ 0 3 4 3 , 0 1 ⟶ 5 4 3 , 0 1 ⟶ 0 3 , 0 1 ⟶ 5 , 5 3 ⟶ 2 , 1 →= , 4 1 →= 1 3 4 3 4 3 , 3 3 →= 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 3 ↦ 2, 4 ↦ 3, 5 ↦ 4, 2 ↦ 5 }, it remains to prove termination of the 6-rule system { 0 1 ⟶ 0 2 3 2 , 0 1 ⟶ 0 2 , 4 2 ⟶ 5 , 1 →= , 3 1 →= 1 2 3 2 3 2 , 2 2 →= 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 5-rule system { 0 1 ⟶ 0 2 3 2 , 0 1 ⟶ 0 2 , 1 →= , 3 1 →= 1 2 3 2 3 2 , 2 2 →= 1 } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (0,2) ↦ 3, (2,3) ↦ 4, (3,2) ↦ 5, (2,1) ↦ 6, (1,2) ↦ 7, (2,2) ↦ 8, (1,3) ↦ 9, (1,5) ↦ 10, (2,5) ↦ 11, (0,3) ↦ 12, (0,5) ↦ 13, (3,1) ↦ 14, (3,3) ↦ 15, (3,5) ↦ 16, (4,1) ↦ 17, (4,2) ↦ 18, (4,3) ↦ 19, (4,5) ↦ 20 }, it remains to prove termination of the 68-rule system { 0 1 2 ⟶ 0 3 4 5 6 , 0 1 7 ⟶ 0 3 4 5 8 , 0 1 9 ⟶ 0 3 4 5 4 , 0 1 10 ⟶ 0 3 4 5 11 , 0 1 2 ⟶ 0 3 6 , 0 1 7 ⟶ 0 3 8 , 0 1 9 ⟶ 0 3 4 , 0 1 10 ⟶ 0 3 11 , 1 2 →= 1 , 1 7 →= 3 , 1 9 →= 12 , 1 10 →= 13 , 2 2 →= 2 , 2 7 →= 7 , 2 9 →= 9 , 2 10 →= 10 , 6 2 →= 6 , 6 7 →= 8 , 6 9 →= 4 , 6 10 →= 11 , 14 2 →= 14 , 14 7 →= 5 , 14 9 →= 15 , 14 10 →= 16 , 17 2 →= 17 , 17 7 →= 18 , 17 9 →= 19 , 17 10 →= 20 , 12 14 2 →= 1 7 4 5 4 5 6 , 12 14 7 →= 1 7 4 5 4 5 8 , 12 14 9 →= 1 7 4 5 4 5 4 , 12 14 10 →= 1 7 4 5 4 5 11 , 9 14 2 →= 2 7 4 5 4 5 6 , 9 14 7 →= 2 7 4 5 4 5 8 , 9 14 9 →= 2 7 4 5 4 5 4 , 9 14 10 →= 2 7 4 5 4 5 11 , 4 14 2 →= 6 7 4 5 4 5 6 , 4 14 7 →= 6 7 4 5 4 5 8 , 4 14 9 →= 6 7 4 5 4 5 4 , 4 14 10 →= 6 7 4 5 4 5 11 , 15 14 2 →= 14 7 4 5 4 5 6 , 15 14 7 →= 14 7 4 5 4 5 8 , 15 14 9 →= 14 7 4 5 4 5 4 , 15 14 10 →= 14 7 4 5 4 5 11 , 19 14 2 →= 17 7 4 5 4 5 6 , 19 14 7 →= 17 7 4 5 4 5 8 , 19 14 9 →= 17 7 4 5 4 5 4 , 19 14 10 →= 17 7 4 5 4 5 11 , 3 8 6 →= 1 2 , 3 8 8 →= 1 7 , 3 8 4 →= 1 9 , 3 8 11 →= 1 10 , 7 8 6 →= 2 2 , 7 8 8 →= 2 7 , 7 8 4 →= 2 9 , 7 8 11 →= 2 10 , 8 8 6 →= 6 2 , 8 8 8 →= 6 7 , 8 8 4 →= 6 9 , 8 8 11 →= 6 10 , 5 8 6 →= 14 2 , 5 8 8 →= 14 7 , 5 8 4 →= 14 9 , 5 8 11 →= 14 10 , 18 8 6 →= 17 2 , 18 8 8 →= 17 7 , 18 8 4 →= 17 9 , 18 8 11 →= 17 10 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 1 ↦ 0, 2 ↦ 1, 9 ↦ 2, 12 ↦ 3, 7 ↦ 4, 10 ↦ 5, 6 ↦ 6, 8 ↦ 7, 4 ↦ 8, 11 ↦ 9, 14 ↦ 10, 15 ↦ 11, 17 ↦ 12, 19 ↦ 13, 5 ↦ 14 }, it remains to prove termination of the 38-rule system { 0 1 →= 0 , 0 2 →= 3 , 1 1 →= 1 , 1 4 →= 4 , 1 2 →= 2 , 1 5 →= 5 , 6 1 →= 6 , 6 4 →= 7 , 6 2 →= 8 , 6 5 →= 9 , 10 1 →= 10 , 10 2 →= 11 , 12 1 →= 12 , 12 2 →= 13 , 3 10 1 →= 0 4 8 14 8 14 6 , 3 10 4 →= 0 4 8 14 8 14 7 , 3 10 2 →= 0 4 8 14 8 14 8 , 3 10 5 →= 0 4 8 14 8 14 9 , 2 10 1 →= 1 4 8 14 8 14 6 , 2 10 4 →= 1 4 8 14 8 14 7 , 2 10 2 →= 1 4 8 14 8 14 8 , 2 10 5 →= 1 4 8 14 8 14 9 , 8 10 1 →= 6 4 8 14 8 14 6 , 8 10 4 →= 6 4 8 14 8 14 7 , 8 10 2 →= 6 4 8 14 8 14 8 , 8 10 5 →= 6 4 8 14 8 14 9 , 11 10 1 →= 10 4 8 14 8 14 6 , 11 10 4 →= 10 4 8 14 8 14 7 , 11 10 2 →= 10 4 8 14 8 14 8 , 11 10 5 →= 10 4 8 14 8 14 9 , 13 10 1 →= 12 4 8 14 8 14 6 , 13 10 4 →= 12 4 8 14 8 14 7 , 13 10 2 →= 12 4 8 14 8 14 8 , 13 10 5 →= 12 4 8 14 8 14 9 , 14 7 6 →= 10 1 , 14 7 7 →= 10 4 , 14 7 8 →= 10 2 , 14 7 9 →= 10 5 } The system is trivially terminating.