/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 5-rule system { 0 1 2 ⟶ 2 2 2 1 1 1 0 0 0 , 2 1 ⟶ 0 0 0 , 0 ⟶ , 1 ⟶ , 2 ⟶ } The system was reversed. After renaming modulo the bijection { 2 ↦ 0, 1 ↦ 1, 0 ↦ 2 }, it remains to prove termination of the 5-rule system { 0 1 2 ⟶ 2 2 2 1 1 1 0 0 0 , 1 0 ⟶ 2 2 2 , 2 ⟶ , 1 ⟶ , 0 ⟶ } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↓) ↦ 2, (2,↑) ↦ 3, (0,↓) ↦ 4, (1,↑) ↦ 5 }, it remains to prove termination of the 17-rule system { 0 1 2 ⟶ 3 2 2 1 1 1 4 4 4 , 0 1 2 ⟶ 3 2 1 1 1 4 4 4 , 0 1 2 ⟶ 3 1 1 1 4 4 4 , 0 1 2 ⟶ 5 1 1 4 4 4 , 0 1 2 ⟶ 5 1 4 4 4 , 0 1 2 ⟶ 5 4 4 4 , 0 1 2 ⟶ 0 4 4 , 0 1 2 ⟶ 0 4 , 0 1 2 ⟶ 0 , 5 4 ⟶ 3 2 2 , 5 4 ⟶ 3 2 , 5 4 ⟶ 3 , 4 1 2 →= 2 2 2 1 1 1 4 4 4 , 1 4 →= 2 2 2 , 2 →= , 1 →= , 4 →= } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3, 5 ↦ 4, 3 ↦ 5 }, it remains to prove termination of the 11-rule system { 0 1 2 ⟶ 0 3 3 , 0 1 2 ⟶ 0 3 , 0 1 2 ⟶ 0 , 4 3 ⟶ 5 2 2 , 4 3 ⟶ 5 2 , 4 3 ⟶ 5 , 3 1 2 →= 2 2 2 1 1 1 3 3 3 , 1 3 →= 2 2 2 , 2 →= , 1 →= , 3 →= } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 8-rule system { 0 1 2 ⟶ 0 3 3 , 0 1 2 ⟶ 0 3 , 0 1 2 ⟶ 0 , 3 1 2 →= 2 2 2 1 1 1 3 3 3 , 1 3 →= 2 2 2 , 2 →= , 1 →= , 3 →= } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,2) ↦ 2, (2,1) ↦ 3, (0,3) ↦ 4, (3,3) ↦ 5, (3,1) ↦ 6, (2,2) ↦ 7, (3,2) ↦ 8, (2,3) ↦ 9, (2,5) ↦ 10, (3,5) ↦ 11, (0,2) ↦ 12, (0,5) ↦ 13, (1,1) ↦ 14, (1,3) ↦ 15, (4,3) ↦ 16, (4,2) ↦ 17, (4,1) ↦ 18, (1,5) ↦ 19, (4,5) ↦ 20 }, it remains to prove termination of the 112-rule system { 0 1 2 3 ⟶ 0 4 5 6 , 0 1 2 7 ⟶ 0 4 5 8 , 0 1 2 9 ⟶ 0 4 5 5 , 0 1 2 10 ⟶ 0 4 5 11 , 0 1 2 3 ⟶ 0 4 6 , 0 1 2 7 ⟶ 0 4 8 , 0 1 2 9 ⟶ 0 4 5 , 0 1 2 10 ⟶ 0 4 11 , 0 1 2 3 ⟶ 0 1 , 0 1 2 7 ⟶ 0 12 , 0 1 2 9 ⟶ 0 4 , 0 1 2 10 ⟶ 0 13 , 4 6 2 3 →= 12 7 7 3 14 14 15 5 5 6 , 4 6 2 7 →= 12 7 7 3 14 14 15 5 5 8 , 4 6 2 9 →= 12 7 7 3 14 14 15 5 5 5 , 4 6 2 10 →= 12 7 7 3 14 14 15 5 5 11 , 15 6 2 3 →= 2 7 7 3 14 14 15 5 5 6 , 15 6 2 7 →= 2 7 7 3 14 14 15 5 5 8 , 15 6 2 9 →= 2 7 7 3 14 14 15 5 5 5 , 15 6 2 10 →= 2 7 7 3 14 14 15 5 5 11 , 9 6 2 3 →= 7 7 7 3 14 14 15 5 5 6 , 9 6 2 7 →= 7 7 7 3 14 14 15 5 5 8 , 9 6 2 9 →= 7 7 7 3 14 14 15 5 5 5 , 9 6 2 10 →= 7 7 7 3 14 14 15 5 5 11 , 5 6 2 3 →= 8 7 7 3 14 14 15 5 5 6 , 5 6 2 7 →= 8 7 7 3 14 14 15 5 5 8 , 5 6 2 9 →= 8 7 7 3 14 14 15 5 5 5 , 5 6 2 10 →= 8 7 7 3 14 14 15 5 5 11 , 16 6 2 3 →= 17 7 7 3 14 14 15 5 5 6 , 16 6 2 7 →= 17 7 7 3 14 14 15 5 5 8 , 16 6 2 9 →= 17 7 7 3 14 14 15 5 5 5 , 16 6 2 10 →= 17 7 7 3 14 14 15 5 5 11 , 1 15 6 →= 12 7 7 3 , 1 15 8 →= 12 7 7 7 , 1 15 5 →= 12 7 7 9 , 1 15 11 →= 12 7 7 10 , 14 15 6 →= 2 7 7 3 , 14 15 8 →= 2 7 7 7 , 14 15 5 →= 2 7 7 9 , 14 15 11 →= 2 7 7 10 , 3 15 6 →= 7 7 7 3 , 3 15 8 →= 7 7 7 7 , 3 15 5 →= 7 7 7 9 , 3 15 11 →= 7 7 7 10 , 6 15 6 →= 8 7 7 3 , 6 15 8 →= 8 7 7 7 , 6 15 5 →= 8 7 7 9 , 6 15 11 →= 8 7 7 10 , 18 15 6 →= 17 7 7 3 , 18 15 8 →= 17 7 7 7 , 18 15 5 →= 17 7 7 9 , 18 15 11 →= 17 7 7 10 , 12 3 →= 1 , 12 7 →= 12 , 12 9 →= 4 , 12 10 →= 13 , 2 3 →= 14 , 2 7 →= 2 , 2 9 →= 15 , 2 10 →= 19 , 7 3 →= 3 , 7 7 →= 7 , 7 9 →= 9 , 7 10 →= 10 , 8 3 →= 6 , 8 7 →= 8 , 8 9 →= 5 , 8 10 →= 11 , 17 3 →= 18 , 17 7 →= 17 , 17 9 →= 16 , 17 10 →= 20 , 1 14 →= 1 , 1 2 →= 12 , 1 15 →= 4 , 1 19 →= 13 , 14 14 →= 14 , 14 2 →= 2 , 14 15 →= 15 , 14 19 →= 19 , 3 14 →= 3 , 3 2 →= 7 , 3 15 →= 9 , 3 19 →= 10 , 6 14 →= 6 , 6 2 →= 8 , 6 15 →= 5 , 6 19 →= 11 , 18 14 →= 18 , 18 2 →= 17 , 18 15 →= 16 , 18 19 →= 20 , 4 6 →= 1 , 4 8 →= 12 , 4 5 →= 4 , 4 11 →= 13 , 15 6 →= 14 , 15 8 →= 2 , 15 5 →= 15 , 15 11 →= 19 , 9 6 →= 3 , 9 8 →= 7 , 9 5 →= 9 , 9 11 →= 10 , 5 6 →= 6 , 5 8 →= 8 , 5 5 →= 5 , 5 11 →= 11 , 16 6 →= 18 , 16 8 →= 17 , 16 5 →= 16 , 16 11 →= 20 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 6 ↦ 1, 2 ↦ 2, 3 ↦ 3, 12 ↦ 4, 7 ↦ 5, 14 ↦ 6, 15 ↦ 7, 5 ↦ 8, 8 ↦ 9, 9 ↦ 10, 10 ↦ 11, 11 ↦ 12, 16 ↦ 13, 17 ↦ 14, 1 ↦ 15, 19 ↦ 16, 18 ↦ 17 }, it remains to prove termination of the 60-rule system { 0 1 2 3 →= 4 5 5 3 6 6 7 8 8 1 , 0 1 2 5 →= 4 5 5 3 6 6 7 8 8 9 , 0 1 2 10 →= 4 5 5 3 6 6 7 8 8 8 , 0 1 2 11 →= 4 5 5 3 6 6 7 8 8 12 , 7 1 2 3 →= 2 5 5 3 6 6 7 8 8 1 , 7 1 2 5 →= 2 5 5 3 6 6 7 8 8 9 , 7 1 2 10 →= 2 5 5 3 6 6 7 8 8 8 , 7 1 2 11 →= 2 5 5 3 6 6 7 8 8 12 , 10 1 2 3 →= 5 5 5 3 6 6 7 8 8 1 , 10 1 2 5 →= 5 5 5 3 6 6 7 8 8 9 , 10 1 2 10 →= 5 5 5 3 6 6 7 8 8 8 , 10 1 2 11 →= 5 5 5 3 6 6 7 8 8 12 , 8 1 2 3 →= 9 5 5 3 6 6 7 8 8 1 , 8 1 2 5 →= 9 5 5 3 6 6 7 8 8 9 , 8 1 2 10 →= 9 5 5 3 6 6 7 8 8 8 , 8 1 2 11 →= 9 5 5 3 6 6 7 8 8 12 , 13 1 2 3 →= 14 5 5 3 6 6 7 8 8 1 , 13 1 2 5 →= 14 5 5 3 6 6 7 8 8 9 , 13 1 2 10 →= 14 5 5 3 6 6 7 8 8 8 , 13 1 2 11 →= 14 5 5 3 6 6 7 8 8 12 , 6 7 1 →= 2 5 5 3 , 6 7 9 →= 2 5 5 5 , 6 7 8 →= 2 5 5 10 , 6 7 12 →= 2 5 5 11 , 4 5 →= 4 , 4 10 →= 0 , 2 5 →= 2 , 2 10 →= 7 , 5 3 →= 3 , 5 5 →= 5 , 5 10 →= 10 , 5 11 →= 11 , 9 3 →= 1 , 9 5 →= 9 , 9 10 →= 8 , 9 11 →= 12 , 14 5 →= 14 , 14 10 →= 13 , 15 6 →= 15 , 6 6 →= 6 , 6 2 →= 2 , 6 7 →= 7 , 6 16 →= 16 , 3 6 →= 3 , 1 6 →= 1 , 17 6 →= 17 , 0 9 →= 4 , 0 8 →= 0 , 7 9 →= 2 , 7 8 →= 7 , 10 1 →= 3 , 10 9 →= 5 , 10 8 →= 10 , 10 12 →= 11 , 8 1 →= 1 , 8 9 →= 9 , 8 8 →= 8 , 8 12 →= 12 , 13 9 →= 14 , 13 8 →= 13 } The system is trivially terminating.