/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 4-rule system { 0 1 2 ⟶ 2 1 0 0 2 1 , 0 ⟶ , 1 ⟶ , 2 ⟶ } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↓) ↦ 2, (2,↑) ↦ 3, (0,↓) ↦ 4, (1,↑) ↦ 5 }, it remains to prove termination of the 10-rule system { 0 1 2 ⟶ 3 1 4 4 2 1 , 0 1 2 ⟶ 5 4 4 2 1 , 0 1 2 ⟶ 0 4 2 1 , 0 1 2 ⟶ 0 2 1 , 0 1 2 ⟶ 3 1 , 0 1 2 ⟶ 5 , 4 1 2 →= 2 1 4 4 2 1 , 4 →= , 1 →= , 2 →= } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3 }, it remains to prove termination of the 6-rule system { 0 1 2 ⟶ 0 3 2 1 , 0 1 2 ⟶ 0 2 1 , 3 1 2 →= 2 1 3 3 2 1 , 3 →= , 1 →= , 2 →= } Applying sparse tiling TROC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (4,0) ↦ 0, (0,1) ↦ 1, (1,2) ↦ 2, (2,1) ↦ 3, (0,3) ↦ 4, (3,2) ↦ 5, (1,1) ↦ 6, (2,2) ↦ 7, (2,3) ↦ 8, (1,3) ↦ 9, (2,5) ↦ 10, (1,5) ↦ 11, (0,2) ↦ 12, (3,1) ↦ 13, (3,3) ↦ 14, (4,3) ↦ 15, (4,2) ↦ 16, (3,5) ↦ 17, (0,5) ↦ 18, (4,1) ↦ 19, (4,5) ↦ 20 }, it remains to prove termination of the 88-rule system { 0 1 2 3 ⟶ 0 4 5 3 6 , 0 1 2 7 ⟶ 0 4 5 3 2 , 0 1 2 8 ⟶ 0 4 5 3 9 , 0 1 2 10 ⟶ 0 4 5 3 11 , 0 1 2 3 ⟶ 0 12 3 6 , 0 1 2 7 ⟶ 0 12 3 2 , 0 1 2 8 ⟶ 0 12 3 9 , 0 1 2 10 ⟶ 0 12 3 11 , 4 13 2 3 →= 12 3 9 14 5 3 6 , 4 13 2 7 →= 12 3 9 14 5 3 2 , 4 13 2 8 →= 12 3 9 14 5 3 9 , 4 13 2 10 →= 12 3 9 14 5 3 11 , 9 13 2 3 →= 2 3 9 14 5 3 6 , 9 13 2 7 →= 2 3 9 14 5 3 2 , 9 13 2 8 →= 2 3 9 14 5 3 9 , 9 13 2 10 →= 2 3 9 14 5 3 11 , 8 13 2 3 →= 7 3 9 14 5 3 6 , 8 13 2 7 →= 7 3 9 14 5 3 2 , 8 13 2 8 →= 7 3 9 14 5 3 9 , 8 13 2 10 →= 7 3 9 14 5 3 11 , 14 13 2 3 →= 5 3 9 14 5 3 6 , 14 13 2 7 →= 5 3 9 14 5 3 2 , 14 13 2 8 →= 5 3 9 14 5 3 9 , 14 13 2 10 →= 5 3 9 14 5 3 11 , 15 13 2 3 →= 16 3 9 14 5 3 6 , 15 13 2 7 →= 16 3 9 14 5 3 2 , 15 13 2 8 →= 16 3 9 14 5 3 9 , 15 13 2 10 →= 16 3 9 14 5 3 11 , 4 13 →= 1 , 4 5 →= 12 , 4 14 →= 4 , 4 17 →= 18 , 9 13 →= 6 , 9 5 →= 2 , 9 14 →= 9 , 9 17 →= 11 , 8 13 →= 3 , 8 5 →= 7 , 8 14 →= 8 , 8 17 →= 10 , 14 13 →= 13 , 14 5 →= 5 , 14 14 →= 14 , 14 17 →= 17 , 15 13 →= 19 , 15 5 →= 16 , 15 14 →= 15 , 15 17 →= 20 , 1 6 →= 1 , 1 2 →= 12 , 1 9 →= 4 , 1 11 →= 18 , 6 6 →= 6 , 6 2 →= 2 , 6 9 →= 9 , 6 11 →= 11 , 3 6 →= 3 , 3 2 →= 7 , 3 9 →= 8 , 3 11 →= 10 , 13 6 →= 13 , 13 2 →= 5 , 13 9 →= 14 , 13 11 →= 17 , 19 6 →= 19 , 19 2 →= 16 , 19 9 →= 15 , 19 11 →= 20 , 12 3 →= 1 , 12 7 →= 12 , 12 8 →= 4 , 12 10 →= 18 , 2 3 →= 6 , 2 7 →= 2 , 2 8 →= 9 , 2 10 →= 11 , 7 3 →= 3 , 7 7 →= 7 , 7 8 →= 8 , 7 10 →= 10 , 5 3 →= 13 , 5 7 →= 5 , 5 8 →= 14 , 5 10 →= 17 , 16 3 →= 19 , 16 7 →= 16 , 16 8 →= 15 , 16 10 →= 20 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 3 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 2 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 15 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 16 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 17 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 18 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 19 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 20 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 9 ↦ 0, 13 ↦ 1, 2 ↦ 2, 3 ↦ 3, 14 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7, 8 ↦ 8, 10 ↦ 9, 11 ↦ 10, 4 ↦ 11, 17 ↦ 12, 15 ↦ 13, 1 ↦ 14, 19 ↦ 15 }, it remains to prove termination of the 34-rule system { 0 1 2 3 →= 2 3 0 4 5 3 6 , 0 1 2 7 →= 2 3 0 4 5 3 2 , 0 1 2 8 →= 2 3 0 4 5 3 0 , 0 1 2 9 →= 2 3 0 4 5 3 10 , 8 1 2 3 →= 7 3 0 4 5 3 6 , 8 1 2 7 →= 7 3 0 4 5 3 2 , 8 1 2 8 →= 7 3 0 4 5 3 0 , 8 1 2 9 →= 7 3 0 4 5 3 10 , 4 1 2 3 →= 5 3 0 4 5 3 6 , 4 1 2 7 →= 5 3 0 4 5 3 2 , 4 1 2 8 →= 5 3 0 4 5 3 0 , 4 1 2 9 →= 5 3 0 4 5 3 10 , 11 4 →= 11 , 0 5 →= 2 , 0 4 →= 0 , 8 5 →= 7 , 8 4 →= 8 , 4 1 →= 1 , 4 5 →= 5 , 4 4 →= 4 , 4 12 →= 12 , 13 4 →= 13 , 14 6 →= 14 , 6 6 →= 6 , 6 2 →= 2 , 6 0 →= 0 , 6 10 →= 10 , 3 6 →= 3 , 3 2 →= 7 , 3 0 →= 8 , 3 10 →= 9 , 1 6 →= 1 , 15 6 →= 15 , 5 3 →= 1 } The system is trivially terminating.