/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { c ↦ 0, b ↦ 1, a ↦ 2 }, it remains to prove termination of the 4-rule system { 0 1 2 2 ⟶ 2 2 1 0 , 1 2 2 2 ⟶ 2 2 2 1 , 2 1 0 ⟶ 0 1 2 , 0 0 1 1 ⟶ 1 1 0 0 } The length-preserving system was inverted. After renaming modulo the bijection { 2 ↦ 0, 1 ↦ 1, 0 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 0 1 2 ⟶ 2 1 0 0 , 0 0 0 1 ⟶ 1 0 0 0 , 2 1 0 ⟶ 0 1 2 , 1 1 2 2 ⟶ 2 2 1 1 } The system was reversed. After renaming modulo the bijection { 2 ↦ 0, 1 ↦ 1, 0 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 1 2 2 ⟶ 2 2 1 0 , 1 2 2 2 ⟶ 2 2 2 1 , 2 1 0 ⟶ 0 1 2 , 0 0 1 1 ⟶ 1 1 0 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↓) ↦ 2, (2,↑) ↦ 3, (0,↓) ↦ 4, (1,↑) ↦ 5 }, it remains to prove termination of the 19-rule system { 0 1 2 2 ⟶ 3 2 1 4 , 0 1 2 2 ⟶ 3 1 4 , 0 1 2 2 ⟶ 5 4 , 0 1 2 2 ⟶ 0 , 5 2 2 2 ⟶ 3 2 2 1 , 5 2 2 2 ⟶ 3 2 1 , 5 2 2 2 ⟶ 3 1 , 5 2 2 2 ⟶ 5 , 3 1 4 ⟶ 0 1 2 , 3 1 4 ⟶ 5 2 , 3 1 4 ⟶ 3 , 0 4 1 1 ⟶ 5 1 4 4 , 0 4 1 1 ⟶ 5 4 4 , 0 4 1 1 ⟶ 0 4 , 0 4 1 1 ⟶ 0 , 4 1 2 2 →= 2 2 1 4 , 1 2 2 2 →= 2 2 2 1 , 2 1 4 →= 4 1 2 , 4 4 1 1 →= 1 1 4 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 8-rule system { 0 1 2 2 ⟶ 3 2 1 4 , 5 2 2 2 ⟶ 3 2 2 1 , 3 1 4 ⟶ 0 1 2 , 0 4 1 1 ⟶ 5 1 4 4 , 4 1 2 2 →= 2 2 1 4 , 1 2 2 2 →= 2 2 2 1 , 2 1 4 →= 4 1 2 , 4 4 1 1 →= 1 1 4 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 1 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 1 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 7-rule system { 0 1 2 2 ⟶ 3 2 1 4 , 5 2 2 2 ⟶ 3 2 2 1 , 0 4 1 1 ⟶ 5 1 4 4 , 4 1 2 2 →= 2 2 1 4 , 1 2 2 2 →= 2 2 2 1 , 2 1 4 →= 4 1 2 , 4 4 1 1 →= 1 1 4 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 1 2 2 →= 2 2 1 0 , 1 2 2 2 →= 2 2 2 1 , 2 1 0 →= 0 1 2 , 0 0 1 1 →= 1 1 0 0 } The system is trivially terminating.