/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { c ↦ 0, b ↦ 1, a ↦ 2 }, it remains to prove termination of the 4-rule system { 0 0 1 ⟶ 2 0 1 , 2 0 1 2 ⟶ 1 0 0 , 1 2 0 ⟶ 2 1 0 2 , 1 0 2 ⟶ 0 2 1 } The system was reversed. After renaming modulo the bijection { 1 ↦ 0, 0 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 1 1 ⟶ 0 1 2 , 2 0 1 2 ⟶ 1 1 0 , 1 2 0 ⟶ 2 1 0 2 , 2 1 0 ⟶ 0 2 1 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↓) ↦ 2, (1,↑) ↦ 3, (2,↑) ↦ 4, (0,↓) ↦ 5 }, it remains to prove termination of the 17-rule system { 0 1 1 ⟶ 0 1 2 , 0 1 1 ⟶ 3 2 , 0 1 1 ⟶ 4 , 4 5 1 2 ⟶ 3 1 5 , 4 5 1 2 ⟶ 3 5 , 4 5 1 2 ⟶ 0 , 3 2 5 ⟶ 4 1 5 2 , 3 2 5 ⟶ 3 5 2 , 3 2 5 ⟶ 0 2 , 3 2 5 ⟶ 4 , 4 1 5 ⟶ 0 2 1 , 4 1 5 ⟶ 4 1 , 4 1 5 ⟶ 3 , 5 1 1 →= 5 1 2 , 2 5 1 2 →= 1 1 5 , 1 2 5 →= 2 1 5 2 , 2 1 5 →= 5 2 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 11-rule system { 0 1 1 ⟶ 0 1 2 , 0 1 1 ⟶ 3 2 , 0 1 1 ⟶ 4 , 4 5 1 2 ⟶ 3 1 5 , 4 5 1 2 ⟶ 3 5 , 3 2 5 ⟶ 4 1 5 2 , 3 2 5 ⟶ 3 5 2 , 5 1 1 →= 5 1 2 , 2 5 1 2 →= 1 1 5 , 1 2 5 →= 2 1 5 2 , 2 1 5 →= 5 2 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3, 5 ↦ 4, 3 ↦ 5 }, it remains to prove termination of the 9-rule system { 0 1 1 ⟶ 0 1 2 , 3 4 1 2 ⟶ 5 1 4 , 3 4 1 2 ⟶ 5 4 , 5 2 4 ⟶ 3 1 4 2 , 5 2 4 ⟶ 5 4 2 , 4 1 1 →= 4 1 2 , 2 4 1 2 →= 1 1 4 , 1 2 4 →= 2 1 4 2 , 2 1 4 →= 4 2 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 1 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 1 ⎟ ⎜ 0 1 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 7-rule system { 0 1 1 ⟶ 0 1 2 , 3 4 1 2 ⟶ 5 1 4 , 3 4 1 2 ⟶ 5 4 , 4 1 1 →= 4 1 2 , 2 4 1 2 →= 1 1 4 , 1 2 4 →= 2 1 4 2 , 2 1 4 →= 4 2 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3 }, it remains to prove termination of the 5-rule system { 0 1 1 ⟶ 0 1 2 , 3 1 1 →= 3 1 2 , 2 3 1 2 →= 1 1 3 , 1 2 3 →= 2 1 3 2 , 2 1 3 →= 3 2 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 7: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 1 ⎟ ⎜ 0 1 0 0 0 1 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 0 ⎟ ⎜ 0 1 0 0 0 1 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 4-rule system { 0 1 1 →= 0 1 2 , 2 0 1 2 →= 1 1 0 , 1 2 0 →= 2 1 0 2 , 2 1 0 →= 0 2 1 } The system is trivially terminating.