/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, d ↦ 1, b ↦ 2, c ↦ 3 }, it remains to prove termination of the 7-rule system { 0 1 ⟶ 1 2 , 0 ⟶ 2 2 2 , 1 ⟶ , 0 ⟶ , 2 1 2 ⟶ 0 1 , 2 3 ⟶ 3 1 1 , 0 3 ⟶ 2 2 3 1 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (1,↑) ↦ 2, (2,↓) ↦ 3, (2,↑) ↦ 4, (3,↓) ↦ 5, (0,↓) ↦ 6 }, it remains to prove termination of the 19-rule system { 0 1 ⟶ 2 3 , 0 1 ⟶ 4 , 0 ⟶ 4 3 3 , 0 ⟶ 4 3 , 0 ⟶ 4 , 4 1 3 ⟶ 0 1 , 4 1 3 ⟶ 2 , 4 5 ⟶ 2 1 , 4 5 ⟶ 2 , 0 5 ⟶ 4 3 5 1 , 0 5 ⟶ 4 5 1 , 0 5 ⟶ 2 , 6 1 →= 1 3 , 6 →= 3 3 3 , 1 →= , 6 →= , 3 1 3 →= 6 1 , 3 5 →= 5 1 1 , 6 5 →= 3 3 5 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6 }, it remains to prove termination of the 16-rule system { 0 1 ⟶ 2 3 , 0 1 ⟶ 4 , 0 ⟶ 4 3 3 , 0 ⟶ 4 3 , 0 ⟶ 4 , 4 1 3 ⟶ 0 1 , 4 1 3 ⟶ 2 , 0 5 ⟶ 4 3 5 1 , 0 5 ⟶ 4 5 1 , 6 1 →= 1 3 , 6 →= 3 3 3 , 1 →= , 6 →= , 3 1 3 →= 6 1 , 3 5 →= 5 1 1 , 6 5 →= 3 3 5 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 4 ↦ 2, 3 ↦ 3, 5 ↦ 4, 6 ↦ 5 }, it remains to prove termination of the 14-rule system { 0 1 ⟶ 2 , 0 ⟶ 2 3 3 , 0 ⟶ 2 3 , 0 ⟶ 2 , 2 1 3 ⟶ 0 1 , 0 4 ⟶ 2 3 4 1 , 0 4 ⟶ 2 4 1 , 5 1 →= 1 3 , 5 →= 3 3 3 , 1 →= , 5 →= , 3 1 3 →= 5 1 , 3 4 →= 4 1 1 , 5 4 →= 3 3 4 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 3: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 1 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 1 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 ⎟ ⎜ 0 1 0 ⎟ ⎜ 0 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 3 ↦ 2, 1 ↦ 3, 4 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 13-rule system { 0 ⟶ 1 2 2 , 0 ⟶ 1 2 , 0 ⟶ 1 , 1 3 2 ⟶ 0 3 , 0 4 ⟶ 1 2 4 3 , 0 4 ⟶ 1 4 3 , 5 3 →= 3 2 , 5 →= 2 2 2 , 3 →= , 5 →= , 2 3 2 →= 5 3 , 2 4 →= 4 3 3 , 5 4 →= 2 2 4 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 1 0 ⎟ ⎜ 0 1 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 1 1 ⎟ ⎜ 0 0 0 2 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 1 1 0 ⎟ ⎜ 0 3 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3, 3 ↦ 4, 5 ↦ 5 }, it remains to prove termination of the 12-rule system { 0 ⟶ 1 2 2 , 0 ⟶ 1 2 , 0 ⟶ 1 , 0 3 ⟶ 1 2 3 4 , 0 3 ⟶ 1 3 4 , 5 4 →= 4 2 , 5 →= 2 2 2 , 4 →= , 5 →= , 2 4 2 →= 5 4 , 2 3 →= 3 4 4 , 5 3 →= 2 2 3 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 5 ↦ 0, 4 ↦ 1, 2 ↦ 2, 3 ↦ 3 }, it remains to prove termination of the 7-rule system { 0 1 →= 1 2 , 0 →= 2 2 2 , 1 →= , 0 →= , 2 1 2 →= 0 1 , 2 3 →= 3 1 1 , 0 3 →= 2 2 3 1 } The system is trivially terminating.