/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a12 ↦ 0, a13 ↦ 1, a14 ↦ 2, a15 ↦ 3, a16 ↦ 4, a23 ↦ 5, a24 ↦ 6, a25 ↦ 7, a26 ↦ 8, a34 ↦ 9, a35 ↦ 10, a36 ↦ 11, a45 ↦ 12, a46 ↦ 13, a56 ↦ 14 }, it remains to prove termination of the 35-rule system { 0 0 0 0 ⟶ , 1 1 1 1 ⟶ , 2 2 2 2 ⟶ , 3 3 3 3 ⟶ , 4 4 4 4 ⟶ , 5 5 5 5 ⟶ , 6 6 6 6 ⟶ , 7 7 7 7 ⟶ , 8 8 8 8 ⟶ , 9 9 9 9 ⟶ , 10 10 10 10 ⟶ , 11 11 11 11 ⟶ , 12 12 12 12 ⟶ , 13 13 13 13 ⟶ , 14 14 14 14 ⟶ , 1 1 ⟶ 0 0 5 5 0 0 , 2 2 ⟶ 0 0 5 5 9 9 5 5 0 0 , 3 3 ⟶ 0 0 5 5 9 9 12 12 9 9 5 5 0 0 , 4 4 ⟶ 0 0 5 5 9 9 12 12 14 14 12 12 9 9 5 5 0 0 , 6 6 ⟶ 5 5 9 9 5 5 , 7 7 ⟶ 5 5 9 9 12 12 9 9 5 5 , 8 8 ⟶ 5 5 9 9 12 12 14 14 12 12 9 9 5 5 , 10 10 ⟶ 9 9 12 12 9 9 , 11 11 ⟶ 9 9 12 12 14 14 12 12 9 9 , 13 13 ⟶ 12 12 14 14 12 12 , 0 0 5 5 0 0 5 5 0 0 5 5 ⟶ , 5 5 9 9 5 5 9 9 5 5 9 9 ⟶ , 9 9 12 12 9 9 12 12 9 9 12 12 ⟶ , 12 12 14 14 12 12 14 14 12 12 14 14 ⟶ , 0 0 9 9 ⟶ 9 9 0 0 , 0 0 12 12 ⟶ 12 12 0 0 , 0 0 14 14 ⟶ 14 14 0 0 , 5 5 12 12 ⟶ 12 12 5 5 , 5 5 14 14 ⟶ 14 14 5 5 , 9 9 14 14 ⟶ 14 14 9 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 13 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 14 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 5 ↦ 1, 9 ↦ 2, 12 ↦ 3, 14 ↦ 4 }, it remains to prove termination of the 15-rule system { 0 0 0 0 ⟶ , 1 1 1 1 ⟶ , 2 2 2 2 ⟶ , 3 3 3 3 ⟶ , 4 4 4 4 ⟶ , 0 0 1 1 0 0 1 1 0 0 1 1 ⟶ , 1 1 2 2 1 1 2 2 1 1 2 2 ⟶ , 2 2 3 3 2 2 3 3 2 2 3 3 ⟶ , 3 3 4 4 3 3 4 4 3 3 4 4 ⟶ , 0 0 2 2 ⟶ 2 2 0 0 , 0 0 3 3 ⟶ 3 3 0 0 , 0 0 4 4 ⟶ 4 4 0 0 , 1 1 3 3 ⟶ 3 3 1 1 , 1 1 4 4 ⟶ 4 4 1 1 , 2 2 4 4 ⟶ 4 4 2 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 2 ↦ 1, 3 ↦ 2, 4 ↦ 3, 1 ↦ 4 }, it remains to prove termination of the 6-rule system { 0 0 1 1 ⟶ 1 1 0 0 , 0 0 2 2 ⟶ 2 2 0 0 , 0 0 3 3 ⟶ 3 3 0 0 , 4 4 2 2 ⟶ 2 2 4 4 , 4 4 3 3 ⟶ 3 3 4 4 , 1 1 3 3 ⟶ 3 3 1 1 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (0,↓) ↦ 1, (1,↓) ↦ 2, (1,↑) ↦ 3, (2,↓) ↦ 4, (3,↓) ↦ 5, (4,↑) ↦ 6, (4,↓) ↦ 7 }, it remains to prove termination of the 20-rule system { 0 1 2 2 ⟶ 3 2 1 1 , 0 1 2 2 ⟶ 3 1 1 , 0 1 2 2 ⟶ 0 1 , 0 1 2 2 ⟶ 0 , 0 1 4 4 ⟶ 0 1 , 0 1 4 4 ⟶ 0 , 0 1 5 5 ⟶ 0 1 , 0 1 5 5 ⟶ 0 , 6 7 4 4 ⟶ 6 7 , 6 7 4 4 ⟶ 6 , 6 7 5 5 ⟶ 6 7 , 6 7 5 5 ⟶ 6 , 3 2 5 5 ⟶ 3 2 , 3 2 5 5 ⟶ 3 , 1 1 2 2 →= 2 2 1 1 , 1 1 4 4 →= 4 4 1 1 , 1 1 5 5 →= 5 5 1 1 , 7 7 4 4 →= 4 4 7 7 , 7 7 5 5 →= 5 5 7 7 , 2 2 5 5 →= 5 5 2 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 1 ↦ 0, 2 ↦ 1, 4 ↦ 2, 5 ↦ 3, 7 ↦ 4 }, it remains to prove termination of the 6-rule system { 0 0 1 1 →= 1 1 0 0 , 0 0 2 2 →= 2 2 0 0 , 0 0 3 3 →= 3 3 0 0 , 4 4 2 2 →= 2 2 4 4 , 4 4 3 3 →= 3 3 4 4 , 1 1 3 3 →= 3 3 1 1 } The system is trivially terminating.