/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 70 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 4 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 53 ms] (8) QDP (9) PisEmptyProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a(x1) -> b(b(x1)) a(b(b(x1))) -> b(b(c(c(c(a(x1)))))) b(b(x1)) -> c(c(c(x1))) c(c(c(b(b(x1))))) -> a(x1) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(a(x_1)) = 2 + x_1 POL(b(x_1)) = 1 + x_1 POL(c(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: b(b(x1)) -> c(c(c(x1))) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a(x1) -> b(b(x1)) a(b(b(x1))) -> b(b(c(c(c(a(x1)))))) c(c(c(b(b(x1))))) -> a(x1) Q is empty. ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A(b(b(x1))) -> C(c(c(a(x1)))) A(b(b(x1))) -> C(c(a(x1))) A(b(b(x1))) -> C(a(x1)) A(b(b(x1))) -> A(x1) C(c(c(b(b(x1))))) -> A(x1) The TRS R consists of the following rules: a(x1) -> b(b(x1)) a(b(b(x1))) -> b(b(c(c(c(a(x1)))))) c(c(c(b(b(x1))))) -> a(x1) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(c(b(b(x1))))) -> A(x1) A(b(b(x1))) -> C(c(c(a(x1)))) A(b(b(x1))) -> A(x1) The TRS R consists of the following rules: a(x1) -> b(b(x1)) a(b(b(x1))) -> b(b(c(c(c(a(x1)))))) c(c(c(b(b(x1))))) -> a(x1) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. C(c(c(b(b(x1))))) -> A(x1) A(b(b(x1))) -> C(c(c(a(x1)))) A(b(b(x1))) -> A(x1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(A(x_1)) = 4 + 4*x_1 POL(C(x_1)) = 2 + 4*x_1 POL(a(x_1)) = 3 + 4*x_1 POL(b(x_1)) = 1 + 2*x_1 POL(c(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: a(x1) -> b(b(x1)) a(b(b(x1))) -> b(b(c(c(c(a(x1)))))) c(c(c(b(b(x1))))) -> a(x1) ---------------------------------------- (8) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: a(x1) -> b(b(x1)) a(b(b(x1))) -> b(b(c(c(c(a(x1)))))) c(c(c(b(b(x1))))) -> a(x1) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (10) YES