/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 87 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 36 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 242 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 21 ms] (8) QDP (9) MRRProof [EQUIVALENT, 15 ms] (10) QDP (11) PisEmptyProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(0(*(*(x1)))) -> *(*(1(1(x1)))) 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) #(#(#(#(x1)))) -> #(#(x1)) #(#(*(*(x1)))) -> *(*(x1)) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(#(x_1)) = 1 + x_1 POL($(x_1)) = x_1 POL(*(x_1)) = 1 + x_1 POL(0(x_1)) = x_1 POL(1(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: #(#(#(#(x1)))) -> #(#(x1)) #(#(*(*(x1)))) -> *(*(x1)) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(0(*(*(x1)))) -> *(*(1(1(x1)))) 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) Q is empty. ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: 0^1(0(*(*(x1)))) -> 1^1(1(x1)) 0^1(0(*(*(x1)))) -> 1^1(x1) 1^1(1(*(*(x1)))) -> 0^1(0(#(#(x1)))) 1^1(1(*(*(x1)))) -> 0^1(#(#(x1))) 1^1(1(*(*(x1)))) -> #^1(#(x1)) 1^1(1(*(*(x1)))) -> #^1(x1) #^1(#(0(0(x1)))) -> 0^1(0(#(#(x1)))) #^1(#(0(0(x1)))) -> 0^1(#(#(x1))) #^1(#(0(0(x1)))) -> #^1(#(x1)) #^1(#(0(0(x1)))) -> #^1(x1) #^1(#(1(1(x1)))) -> 1^1(1(#(#(x1)))) #^1(#(1(1(x1)))) -> 1^1(#(#(x1))) #^1(#(1(1(x1)))) -> #^1(#(x1)) #^1(#(1(1(x1)))) -> #^1(x1) The TRS R consists of the following rules: 0(0(*(*(x1)))) -> *(*(1(1(x1)))) 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. #^1(#(0(0(x1)))) -> 0^1(0(#(#(x1)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(0^1(x_1)) = [[-I]] + [[0A, 0A, -I]] * x_1 >>> <<< POL(0(x_1)) = [[-I], [-I], [0A]] + [[0A, -I, 0A], [0A, -I, 0A], [1A, 0A, 0A]] * x_1 >>> <<< POL(*(x_1)) = [[-I], [-I], [-I]] + [[0A, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(1^1(x_1)) = [[-I]] + [[0A, -I, 0A]] * x_1 >>> <<< POL(1(x_1)) = [[-I], [0A], [-I]] + [[0A, 0A, 0A], [-I, 0A, 1A], [-I, 0A, 0A]] * x_1 >>> <<< POL(#(x_1)) = [[-I], [-I], [-I]] + [[0A, -I, 0A], [-I, 0A, 0A], [-I, -I, 0A]] * x_1 >>> <<< POL(#^1(x_1)) = [[-I]] + [[0A, 0A, 0A]] * x_1 >>> <<< POL($(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, -I], [-I, 0A, -I], [0A, 0A, -I]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) 0(0(*(*(x1)))) -> *(*(1(1(x1)))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: 0^1(0(*(*(x1)))) -> 1^1(1(x1)) 0^1(0(*(*(x1)))) -> 1^1(x1) 1^1(1(*(*(x1)))) -> 0^1(0(#(#(x1)))) 1^1(1(*(*(x1)))) -> 0^1(#(#(x1))) 1^1(1(*(*(x1)))) -> #^1(#(x1)) 1^1(1(*(*(x1)))) -> #^1(x1) #^1(#(0(0(x1)))) -> 0^1(#(#(x1))) #^1(#(0(0(x1)))) -> #^1(#(x1)) #^1(#(0(0(x1)))) -> #^1(x1) #^1(#(1(1(x1)))) -> 1^1(1(#(#(x1)))) #^1(#(1(1(x1)))) -> 1^1(#(#(x1))) #^1(#(1(1(x1)))) -> #^1(#(x1)) #^1(#(1(1(x1)))) -> #^1(x1) The TRS R consists of the following rules: 0(0(*(*(x1)))) -> *(*(1(1(x1)))) 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. 0^1(0(*(*(x1)))) -> 1^1(x1) 1^1(1(*(*(x1)))) -> 0^1(#(#(x1))) 1^1(1(*(*(x1)))) -> #^1(#(x1)) 1^1(1(*(*(x1)))) -> #^1(x1) #^1(#(0(0(x1)))) -> 0^1(#(#(x1))) #^1(#(0(0(x1)))) -> #^1(#(x1)) #^1(#(0(0(x1)))) -> #^1(x1) #^1(#(1(1(x1)))) -> 1^1(1(#(#(x1)))) #^1(#(1(1(x1)))) -> 1^1(#(#(x1))) #^1(#(1(1(x1)))) -> #^1(#(x1)) #^1(#(1(1(x1)))) -> #^1(x1) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(#(x_1)) = x_1 POL(#^1(x_1)) = x_1 POL($(x_1)) = x_1 POL(*(x_1)) = x_1 POL(0(x_1)) = 1 + x_1 POL(0^1(x_1)) = x_1 POL(1(x_1)) = 1 + x_1 POL(1^1(x_1)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) 0(0(*(*(x1)))) -> *(*(1(1(x1)))) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: 0^1(0(*(*(x1)))) -> 1^1(1(x1)) 1^1(1(*(*(x1)))) -> 0^1(0(#(#(x1)))) The TRS R consists of the following rules: 0(0(*(*(x1)))) -> *(*(1(1(x1)))) 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: 0^1(0(*(*(x1)))) -> 1^1(1(x1)) 1^1(1(*(*(x1)))) -> 0^1(0(#(#(x1)))) Used ordering: Polynomial interpretation [POLO]: POL(#(x_1)) = 1 + 2*x_1 POL($(x_1)) = 2*x_1 POL(*(x_1)) = 1 + 2*x_1 POL(0(x_1)) = x_1 POL(0^1(x_1)) = 2*x_1 POL(1(x_1)) = x_1 POL(1^1(x_1)) = 3 + 2*x_1 ---------------------------------------- (10) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: 0(0(*(*(x1)))) -> *(*(1(1(x1)))) 1(1(*(*(x1)))) -> 0(0(#(#(x1)))) #(#(0(0(x1)))) -> 0(0(#(#(x1)))) #(#(1(1(x1)))) -> 1(1(#(#(x1)))) #(#($($(x1)))) -> *(*($($(x1)))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (12) YES