/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { 0 ↦ 0, * ↦ 1, 1 ↦ 2, # ↦ 3, $ ↦ 4 }, it remains to prove termination of the 7-rule system { 0 0 1 1 ⟶ 1 1 2 2 , 2 2 1 1 ⟶ 0 0 3 3 , 3 3 0 0 ⟶ 0 0 3 3 , 3 3 2 2 ⟶ 2 2 3 3 , 3 3 4 4 ⟶ 1 1 4 4 , 3 3 3 3 ⟶ 3 3 , 3 3 1 1 ⟶ 1 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 0 1 1 ⟶ 1 1 2 2 , 2 2 1 1 ⟶ 0 0 3 3 , 3 3 0 0 ⟶ 0 0 3 3 , 3 3 2 2 ⟶ 2 2 3 3 , 3 3 4 4 ⟶ 1 1 4 4 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (0,↓) ↦ 1, (1,↓) ↦ 2, (2,↑) ↦ 3, (2,↓) ↦ 4, (3,↓) ↦ 5, (3,↑) ↦ 6, (4,↓) ↦ 7 }, it remains to prove termination of the 19-rule system { 0 1 2 2 ⟶ 3 4 , 0 1 2 2 ⟶ 3 , 3 4 2 2 ⟶ 0 1 5 5 , 3 4 2 2 ⟶ 0 5 5 , 3 4 2 2 ⟶ 6 5 , 3 4 2 2 ⟶ 6 , 6 5 1 1 ⟶ 0 1 5 5 , 6 5 1 1 ⟶ 0 5 5 , 6 5 1 1 ⟶ 6 5 , 6 5 1 1 ⟶ 6 , 6 5 4 4 ⟶ 3 4 5 5 , 6 5 4 4 ⟶ 3 5 5 , 6 5 4 4 ⟶ 6 5 , 6 5 4 4 ⟶ 6 , 1 1 2 2 →= 2 2 4 4 , 4 4 2 2 →= 1 1 5 5 , 5 5 1 1 →= 1 1 5 5 , 5 5 4 4 →= 4 4 5 5 , 5 5 7 7 →= 2 2 7 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 4 ↦ 1, 2 ↦ 2, 0 ↦ 3, 1 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7 }, it remains to prove termination of the 8-rule system { 0 1 2 2 ⟶ 3 4 5 5 , 6 5 4 4 ⟶ 3 4 5 5 , 6 5 1 1 ⟶ 0 1 5 5 , 4 4 2 2 →= 2 2 1 1 , 1 1 2 2 →= 4 4 5 5 , 5 5 4 4 →= 4 4 5 5 , 5 5 1 1 →= 1 1 5 5 , 5 5 7 7 →= 2 2 7 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 6 ↦ 0, 5 ↦ 1, 1 ↦ 2, 0 ↦ 3, 4 ↦ 4, 2 ↦ 5, 7 ↦ 6 }, it remains to prove termination of the 6-rule system { 0 1 2 2 ⟶ 3 2 1 1 , 4 4 5 5 →= 5 5 2 2 , 2 2 5 5 →= 4 4 1 1 , 1 1 4 4 →= 4 4 1 1 , 1 1 2 2 →= 2 2 1 1 , 1 1 6 6 →= 5 5 6 6 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 4 ↦ 0, 5 ↦ 1, 2 ↦ 2, 1 ↦ 3, 6 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 0 1 1 →= 1 1 2 2 , 2 2 1 1 →= 0 0 3 3 , 3 3 0 0 →= 0 0 3 3 , 3 3 2 2 →= 2 2 3 3 , 3 3 4 4 →= 1 1 4 4 } The system is trivially terminating.