/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { b ↦ 0, a ↦ 1 }, it remains to prove termination of the 8-rule system { 0 1 0 ⟶ 0 1 1 1 0 , 0 1 1 1 0 1 1 0 ⟶ 0 1 1 0 1 1 0 1 1 1 0 0 , 0 1 1 1 0 1 1 1 0 ⟶ 0 , 0 1 1 1 0 0 0 ⟶ 0 0 0 1 1 1 0 , 0 1 1 0 0 ⟶ 0 , 0 0 1 1 0 ⟶ 0 , 0 1 1 1 0 1 0 ⟶ 0 , 0 1 0 1 1 1 0 ⟶ 0 } The system was reversed. After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1 }, it remains to prove termination of the 8-rule system { 0 1 0 ⟶ 0 1 1 1 0 , 0 1 1 0 1 1 1 0 ⟶ 0 0 1 1 1 0 1 1 0 1 1 0 , 0 1 1 1 0 1 1 1 0 ⟶ 0 , 0 0 0 1 1 1 0 ⟶ 0 1 1 1 0 0 0 , 0 0 1 1 0 ⟶ 0 , 0 1 1 0 0 ⟶ 0 , 0 1 0 1 1 1 0 ⟶ 0 , 0 1 1 1 0 1 0 ⟶ 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 4: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 ⎟ ⎜ 0 1 0 0 ⎟ ⎜ 0 0 0 1 ⎟ ⎜ 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1 }, it remains to prove termination of the 5-rule system { 0 1 1 0 1 1 1 0 ⟶ 0 0 1 1 1 0 1 1 0 1 1 0 , 0 1 1 1 0 1 1 1 0 ⟶ 0 , 0 0 0 1 1 1 0 ⟶ 0 1 1 1 0 0 0 , 0 0 1 1 0 ⟶ 0 , 0 1 1 0 0 ⟶ 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (0,↓) ↦ 2 }, it remains to prove termination of the 12-rule system { 0 1 1 2 1 1 1 2 ⟶ 0 2 1 1 1 2 1 1 2 1 1 2 , 0 1 1 2 1 1 1 2 ⟶ 0 1 1 1 2 1 1 2 1 1 2 , 0 1 1 2 1 1 1 2 ⟶ 0 1 1 2 1 1 2 , 0 1 1 2 1 1 1 2 ⟶ 0 1 1 2 , 0 2 2 1 1 1 2 ⟶ 0 1 1 1 2 2 2 , 0 2 2 1 1 1 2 ⟶ 0 2 2 , 0 2 2 1 1 1 2 ⟶ 0 2 , 2 1 1 2 1 1 1 2 →= 2 2 1 1 1 2 1 1 2 1 1 2 , 2 1 1 1 2 1 1 1 2 →= 2 , 2 2 2 1 1 1 2 →= 2 1 1 1 2 2 2 , 2 2 1 1 2 →= 2 , 2 1 1 2 2 →= 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 9: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 1 0 0 0 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 2 ↦ 0, 1 ↦ 1 }, it remains to prove termination of the 4-rule system { 0 1 1 0 1 1 1 0 →= 0 0 1 1 1 0 1 1 0 1 1 0 , 0 0 0 1 1 1 0 →= 0 1 1 1 0 0 0 , 0 0 1 1 0 →= 0 , 0 1 1 0 0 →= 0 } The system is trivially terminating.