/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1 }, it remains to prove termination of the 4-rule system { 0 1 1 1 ⟶ 1 1 1 1 , 1 1 1 0 ⟶ 1 0 1 0 , 1 1 0 0 ⟶ 1 0 1 0 , 0 0 0 1 ⟶ 0 1 0 0 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 5: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 ⎟ ⎜ 0 1 0 0 0 ⎟ ⎜ 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1 }, it remains to prove termination of the 3-rule system { 0 1 1 1 ⟶ 1 1 1 1 , 1 1 1 0 ⟶ 1 0 1 0 , 0 0 0 1 ⟶ 0 1 0 0 } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (1,0) ↦ 3, (1,3) ↦ 4, (2,0) ↦ 5, (2,1) ↦ 6, (0,3) ↦ 7 }, it remains to prove termination of the 27-rule system { 0 1 2 2 3 ⟶ 1 2 2 2 3 , 0 1 2 2 2 ⟶ 1 2 2 2 2 , 0 1 2 2 4 ⟶ 1 2 2 2 4 , 3 1 2 2 3 ⟶ 2 2 2 2 3 , 3 1 2 2 2 ⟶ 2 2 2 2 2 , 3 1 2 2 4 ⟶ 2 2 2 2 4 , 5 1 2 2 3 ⟶ 6 2 2 2 3 , 5 1 2 2 2 ⟶ 6 2 2 2 2 , 5 1 2 2 4 ⟶ 6 2 2 2 4 , 1 2 2 3 0 ⟶ 1 3 1 3 0 , 1 2 2 3 1 ⟶ 1 3 1 3 1 , 1 2 2 3 7 ⟶ 1 3 1 3 7 , 2 2 2 3 0 ⟶ 2 3 1 3 0 , 2 2 2 3 1 ⟶ 2 3 1 3 1 , 2 2 2 3 7 ⟶ 2 3 1 3 7 , 6 2 2 3 0 ⟶ 6 3 1 3 0 , 6 2 2 3 1 ⟶ 6 3 1 3 1 , 6 2 2 3 7 ⟶ 6 3 1 3 7 , 0 0 0 1 3 ⟶ 0 1 3 0 0 , 0 0 0 1 2 ⟶ 0 1 3 0 1 , 0 0 0 1 4 ⟶ 0 1 3 0 7 , 3 0 0 1 3 ⟶ 3 1 3 0 0 , 3 0 0 1 2 ⟶ 3 1 3 0 1 , 3 0 0 1 4 ⟶ 3 1 3 0 7 , 5 0 0 1 3 ⟶ 5 1 3 0 0 , 5 0 0 1 2 ⟶ 5 1 3 0 1 , 5 0 0 1 4 ⟶ 5 1 3 0 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 7 ↦ 5, 6 ↦ 6, 5 ↦ 7 }, it remains to prove termination of the 21-rule system { 0 1 2 2 3 ⟶ 1 2 2 2 3 , 0 1 2 2 2 ⟶ 1 2 2 2 2 , 0 1 2 2 4 ⟶ 1 2 2 2 4 , 3 1 2 2 3 ⟶ 2 2 2 2 3 , 3 1 2 2 2 ⟶ 2 2 2 2 2 , 3 1 2 2 4 ⟶ 2 2 2 2 4 , 1 2 2 3 0 ⟶ 1 3 1 3 0 , 1 2 2 3 1 ⟶ 1 3 1 3 1 , 1 2 2 3 5 ⟶ 1 3 1 3 5 , 2 2 2 3 0 ⟶ 2 3 1 3 0 , 2 2 2 3 1 ⟶ 2 3 1 3 1 , 2 2 2 3 5 ⟶ 2 3 1 3 5 , 6 2 2 3 0 ⟶ 6 3 1 3 0 , 6 2 2 3 1 ⟶ 6 3 1 3 1 , 6 2 2 3 5 ⟶ 6 3 1 3 5 , 0 0 0 1 3 ⟶ 0 1 3 0 0 , 0 0 0 1 2 ⟶ 0 1 3 0 1 , 3 0 0 1 3 ⟶ 3 1 3 0 0 , 3 0 0 1 2 ⟶ 3 1 3 0 1 , 7 0 0 1 3 ⟶ 7 1 3 0 0 , 7 0 0 1 2 ⟶ 7 1 3 0 1 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 1 ↦ 1, 2 ↦ 2, 4 ↦ 3, 0 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7 }, it remains to prove termination of the 15-rule system { 0 1 2 2 0 ⟶ 2 2 2 2 0 , 0 1 2 2 2 ⟶ 2 2 2 2 2 , 0 1 2 2 3 ⟶ 2 2 2 2 3 , 1 2 2 0 4 ⟶ 1 0 1 0 4 , 1 2 2 0 1 ⟶ 1 0 1 0 1 , 1 2 2 0 5 ⟶ 1 0 1 0 5 , 2 2 2 0 4 ⟶ 2 0 1 0 4 , 2 2 2 0 1 ⟶ 2 0 1 0 1 , 2 2 2 0 5 ⟶ 2 0 1 0 5 , 6 2 2 0 4 ⟶ 6 0 1 0 4 , 6 2 2 0 1 ⟶ 6 0 1 0 1 , 6 2 2 0 5 ⟶ 6 0 1 0 5 , 4 4 4 1 0 ⟶ 4 1 0 4 4 , 0 4 4 1 0 ⟶ 0 1 0 4 4 , 7 4 4 1 0 ⟶ 7 1 0 4 4 } Applying sparse untiling TRFCU(2) after reversal [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { 2 ↦ 0, 1 ↦ 1, 0 ↦ 2, 3 ↦ 3, 4 ↦ 4 }, it remains to prove termination of the 5-rule system { 0 0 0 1 2 ⟶ 0 1 3 1 2 , 0 0 0 1 3 ⟶ 0 1 3 1 3 , 0 0 0 1 4 ⟶ 0 1 3 1 4 , 2 2 2 3 1 ⟶ 2 3 1 2 2 , 1 2 2 3 1 ⟶ 1 3 1 2 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 2 ↦ 0, 3 ↦ 1, 1 ↦ 2 }, it remains to prove termination of the 2-rule system { 0 0 0 1 2 ⟶ 0 1 2 0 0 , 2 0 0 1 2 ⟶ 2 1 2 0 0 } The system was reversed. After renaming modulo the bijection { 2 ↦ 0, 1 ↦ 1, 0 ↦ 2 }, it remains to prove termination of the 2-rule system { 0 1 2 2 2 ⟶ 2 2 0 1 2 , 0 1 2 2 0 ⟶ 2 2 0 1 0 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↓) ↦ 2, (0,↓) ↦ 3 }, it remains to prove termination of the 4-rule system { 0 1 2 2 2 ⟶ 0 1 2 , 0 1 2 2 3 ⟶ 0 1 3 , 3 1 2 2 2 →= 2 2 3 1 2 , 3 1 2 2 3 →= 2 2 3 1 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 2-rule system { 0 1 2 2 2 →= 2 2 0 1 2 , 0 1 2 2 0 →= 2 2 0 1 0 } The system is trivially terminating.