/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { b ↦ 0, a ↦ 1 }, it remains to prove termination of the 3-rule system { 0 0 0 1 ⟶ 1 0 1 1 , 1 1 1 0 ⟶ 0 1 1 0 , 1 1 1 1 ⟶ 1 1 0 0 } The system was reversed. After renaming modulo the bijection { 1 ↦ 0, 0 ↦ 1 }, it remains to prove termination of the 3-rule system { 0 1 1 1 ⟶ 0 0 1 0 , 1 0 0 0 ⟶ 1 0 0 1 , 0 0 0 0 ⟶ 1 1 0 0 } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (1,1) ↦ 2, (1,0) ↦ 3, (1,3) ↦ 4, (0,3) ↦ 5, (2,0) ↦ 6, (2,1) ↦ 7 }, it remains to prove termination of the 27-rule system { 0 1 2 2 3 ⟶ 0 0 1 3 0 , 0 1 2 2 2 ⟶ 0 0 1 3 1 , 0 1 2 2 4 ⟶ 0 0 1 3 5 , 3 1 2 2 3 ⟶ 3 0 1 3 0 , 3 1 2 2 2 ⟶ 3 0 1 3 1 , 3 1 2 2 4 ⟶ 3 0 1 3 5 , 6 1 2 2 3 ⟶ 6 0 1 3 0 , 6 1 2 2 2 ⟶ 6 0 1 3 1 , 6 1 2 2 4 ⟶ 6 0 1 3 5 , 1 3 0 0 0 ⟶ 1 3 0 1 3 , 1 3 0 0 1 ⟶ 1 3 0 1 2 , 1 3 0 0 5 ⟶ 1 3 0 1 4 , 2 3 0 0 0 ⟶ 2 3 0 1 3 , 2 3 0 0 1 ⟶ 2 3 0 1 2 , 2 3 0 0 5 ⟶ 2 3 0 1 4 , 7 3 0 0 0 ⟶ 7 3 0 1 3 , 7 3 0 0 1 ⟶ 7 3 0 1 2 , 7 3 0 0 5 ⟶ 7 3 0 1 4 , 0 0 0 0 0 ⟶ 1 2 3 0 0 , 0 0 0 0 1 ⟶ 1 2 3 0 1 , 0 0 0 0 5 ⟶ 1 2 3 0 5 , 3 0 0 0 0 ⟶ 2 2 3 0 0 , 3 0 0 0 1 ⟶ 2 2 3 0 1 , 3 0 0 0 5 ⟶ 2 2 3 0 5 , 6 0 0 0 0 ⟶ 7 2 3 0 0 , 6 0 0 0 1 ⟶ 7 2 3 0 1 , 6 0 0 0 5 ⟶ 7 2 3 0 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 6 ↦ 4, 7 ↦ 5, 5 ↦ 6 }, it remains to prove termination of the 9-rule system { 0 1 2 2 3 ⟶ 0 0 1 3 0 , 3 1 2 2 3 ⟶ 3 0 1 3 0 , 4 1 2 2 3 ⟶ 4 0 1 3 0 , 1 3 0 0 1 ⟶ 1 3 0 1 2 , 2 3 0 0 1 ⟶ 2 3 0 1 2 , 5 3 0 0 1 ⟶ 5 3 0 1 2 , 3 0 0 0 0 ⟶ 2 2 3 0 0 , 3 0 0 0 1 ⟶ 2 2 3 0 1 , 3 0 0 0 6 ⟶ 2 2 3 0 6 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↓) ↦ 2, (3,↓) ↦ 3, (0,↓) ↦ 4, (1,↑) ↦ 5, (3,↑) ↦ 6, (4,↑) ↦ 7, (2,↑) ↦ 8, (5,↑) ↦ 9, (6,↓) ↦ 10, (4,↓) ↦ 11, (5,↓) ↦ 12 }, it remains to prove termination of the 48-rule system { 0 1 2 2 3 ⟶ 0 4 1 3 4 , 0 1 2 2 3 ⟶ 0 1 3 4 , 0 1 2 2 3 ⟶ 5 3 4 , 0 1 2 2 3 ⟶ 6 4 , 0 1 2 2 3 ⟶ 0 , 6 1 2 2 3 ⟶ 6 4 1 3 4 , 6 1 2 2 3 ⟶ 0 1 3 4 , 6 1 2 2 3 ⟶ 5 3 4 , 6 1 2 2 3 ⟶ 6 4 , 6 1 2 2 3 ⟶ 0 , 7 1 2 2 3 ⟶ 7 4 1 3 4 , 7 1 2 2 3 ⟶ 0 1 3 4 , 7 1 2 2 3 ⟶ 5 3 4 , 7 1 2 2 3 ⟶ 6 4 , 7 1 2 2 3 ⟶ 0 , 5 3 4 4 1 ⟶ 5 3 4 1 2 , 5 3 4 4 1 ⟶ 6 4 1 2 , 5 3 4 4 1 ⟶ 0 1 2 , 5 3 4 4 1 ⟶ 5 2 , 5 3 4 4 1 ⟶ 8 , 8 3 4 4 1 ⟶ 8 3 4 1 2 , 8 3 4 4 1 ⟶ 6 4 1 2 , 8 3 4 4 1 ⟶ 0 1 2 , 8 3 4 4 1 ⟶ 5 2 , 8 3 4 4 1 ⟶ 8 , 9 3 4 4 1 ⟶ 9 3 4 1 2 , 9 3 4 4 1 ⟶ 6 4 1 2 , 9 3 4 4 1 ⟶ 0 1 2 , 9 3 4 4 1 ⟶ 5 2 , 9 3 4 4 1 ⟶ 8 , 6 4 4 4 4 ⟶ 8 2 3 4 4 , 6 4 4 4 4 ⟶ 8 3 4 4 , 6 4 4 4 4 ⟶ 6 4 4 , 6 4 4 4 1 ⟶ 8 2 3 4 1 , 6 4 4 4 1 ⟶ 8 3 4 1 , 6 4 4 4 1 ⟶ 6 4 1 , 6 4 4 4 10 ⟶ 8 2 3 4 10 , 6 4 4 4 10 ⟶ 8 3 4 10 , 6 4 4 4 10 ⟶ 6 4 10 , 4 1 2 2 3 →= 4 4 1 3 4 , 3 1 2 2 3 →= 3 4 1 3 4 , 11 1 2 2 3 →= 11 4 1 3 4 , 1 3 4 4 1 →= 1 3 4 1 2 , 2 3 4 4 1 →= 2 3 4 1 2 , 12 3 4 4 1 →= 12 3 4 1 2 , 3 4 4 4 4 →= 2 2 3 4 4 , 3 4 4 4 1 →= 2 2 3 4 1 , 3 4 4 4 10 →= 2 2 3 4 10 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 6 ↦ 5, 7 ↦ 6, 5 ↦ 7, 8 ↦ 8, 9 ↦ 9, 10 ↦ 10, 11 ↦ 11, 12 ↦ 12 }, it remains to prove termination of the 18-rule system { 0 1 2 2 3 ⟶ 0 4 1 3 4 , 5 1 2 2 3 ⟶ 5 4 1 3 4 , 6 1 2 2 3 ⟶ 6 4 1 3 4 , 7 3 4 4 1 ⟶ 7 3 4 1 2 , 8 3 4 4 1 ⟶ 8 3 4 1 2 , 9 3 4 4 1 ⟶ 9 3 4 1 2 , 5 4 4 4 4 ⟶ 8 2 3 4 4 , 5 4 4 4 1 ⟶ 8 2 3 4 1 , 5 4 4 4 10 ⟶ 8 2 3 4 10 , 4 1 2 2 3 →= 4 4 1 3 4 , 3 1 2 2 3 →= 3 4 1 3 4 , 11 1 2 2 3 →= 11 4 1 3 4 , 1 3 4 4 1 →= 1 3 4 1 2 , 2 3 4 4 1 →= 2 3 4 1 2 , 12 3 4 4 1 →= 12 3 4 1 2 , 3 4 4 4 4 →= 2 2 3 4 4 , 3 4 4 4 1 →= 2 2 3 4 1 , 3 4 4 4 10 →= 2 2 3 4 10 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7, 8 ↦ 8, 9 ↦ 9, 11 ↦ 10, 12 ↦ 11, 10 ↦ 12 }, it remains to prove termination of the 15-rule system { 0 1 2 2 3 ⟶ 0 4 1 3 4 , 5 1 2 2 3 ⟶ 5 4 1 3 4 , 6 1 2 2 3 ⟶ 6 4 1 3 4 , 7 3 4 4 1 ⟶ 7 3 4 1 2 , 8 3 4 4 1 ⟶ 8 3 4 1 2 , 9 3 4 4 1 ⟶ 9 3 4 1 2 , 4 1 2 2 3 →= 4 4 1 3 4 , 3 1 2 2 3 →= 3 4 1 3 4 , 10 1 2 2 3 →= 10 4 1 3 4 , 1 3 4 4 1 →= 1 3 4 1 2 , 2 3 4 4 1 →= 2 3 4 1 2 , 11 3 4 4 1 →= 11 3 4 1 2 , 3 4 4 4 4 →= 2 2 3 4 4 , 3 4 4 4 1 →= 2 2 3 4 1 , 3 4 4 4 12 →= 2 2 3 4 12 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 12 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 6 ↦ 5, 7 ↦ 6, 8 ↦ 7, 9 ↦ 8, 10 ↦ 9, 11 ↦ 10, 12 ↦ 11 }, it remains to prove termination of the 14-rule system { 0 1 2 2 3 ⟶ 0 4 1 3 4 , 5 1 2 2 3 ⟶ 5 4 1 3 4 , 6 3 4 4 1 ⟶ 6 3 4 1 2 , 7 3 4 4 1 ⟶ 7 3 4 1 2 , 8 3 4 4 1 ⟶ 8 3 4 1 2 , 4 1 2 2 3 →= 4 4 1 3 4 , 3 1 2 2 3 →= 3 4 1 3 4 , 9 1 2 2 3 →= 9 4 1 3 4 , 1 3 4 4 1 →= 1 3 4 1 2 , 2 3 4 4 1 →= 2 3 4 1 2 , 10 3 4 4 1 →= 10 3 4 1 2 , 3 4 4 4 4 →= 2 2 3 4 4 , 3 4 4 4 1 →= 2 2 3 4 1 , 3 4 4 4 11 →= 2 2 3 4 11 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 11 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 6 ↦ 5, 7 ↦ 6, 8 ↦ 7, 9 ↦ 8, 10 ↦ 9, 11 ↦ 10 }, it remains to prove termination of the 13-rule system { 0 1 2 2 3 ⟶ 0 4 1 3 4 , 5 3 4 4 1 ⟶ 5 3 4 1 2 , 6 3 4 4 1 ⟶ 6 3 4 1 2 , 7 3 4 4 1 ⟶ 7 3 4 1 2 , 4 1 2 2 3 →= 4 4 1 3 4 , 3 1 2 2 3 →= 3 4 1 3 4 , 8 1 2 2 3 →= 8 4 1 3 4 , 1 3 4 4 1 →= 1 3 4 1 2 , 2 3 4 4 1 →= 2 3 4 1 2 , 9 3 4 4 1 →= 9 3 4 1 2 , 3 4 4 4 4 →= 2 2 3 4 4 , 3 4 4 4 1 →= 2 2 3 4 1 , 3 4 4 4 10 →= 2 2 3 4 10 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 10 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 5 ↦ 0, 3 ↦ 1, 4 ↦ 2, 1 ↦ 3, 2 ↦ 4, 6 ↦ 5, 7 ↦ 6, 8 ↦ 7, 9 ↦ 8, 10 ↦ 9 }, it remains to prove termination of the 12-rule system { 0 1 2 2 3 ⟶ 0 1 2 3 4 , 5 1 2 2 3 ⟶ 5 1 2 3 4 , 6 1 2 2 3 ⟶ 6 1 2 3 4 , 2 3 4 4 1 →= 2 2 3 1 2 , 1 3 4 4 1 →= 1 2 3 1 2 , 7 3 4 4 1 →= 7 2 3 1 2 , 3 1 2 2 3 →= 3 1 2 3 4 , 4 1 2 2 3 →= 4 1 2 3 4 , 8 1 2 2 3 →= 8 1 2 3 4 , 1 2 2 2 2 →= 4 4 1 2 2 , 1 2 2 2 3 →= 4 4 1 2 3 , 1 2 2 2 9 →= 4 4 1 2 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7, 8 ↦ 8, 9 ↦ 9 }, it remains to prove termination of the 11-rule system { 0 1 2 2 3 ⟶ 0 1 2 3 4 , 5 1 2 2 3 ⟶ 5 1 2 3 4 , 6 1 2 2 3 ⟶ 6 1 2 3 4 , 2 3 4 4 1 →= 2 2 3 1 2 , 7 3 4 4 1 →= 7 2 3 1 2 , 3 1 2 2 3 →= 3 1 2 3 4 , 4 1 2 2 3 →= 4 1 2 3 4 , 8 1 2 2 3 →= 8 1 2 3 4 , 1 2 2 2 2 →= 4 4 1 2 2 , 1 2 2 2 3 →= 4 4 1 2 3 , 1 2 2 2 9 →= 4 4 1 2 9 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 6: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ 9 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 6 ↦ 6, 8 ↦ 7, 9 ↦ 8 }, it remains to prove termination of the 10-rule system { 0 1 2 2 3 ⟶ 0 1 2 3 4 , 5 1 2 2 3 ⟶ 5 1 2 3 4 , 6 1 2 2 3 ⟶ 6 1 2 3 4 , 2 3 4 4 1 →= 2 2 3 1 2 , 3 1 2 2 3 →= 3 1 2 3 4 , 4 1 2 2 3 →= 4 1 2 3 4 , 7 1 2 2 3 →= 7 1 2 3 4 , 1 2 2 2 2 →= 4 4 1 2 2 , 1 2 2 2 3 →= 4 4 1 2 3 , 1 2 2 2 8 →= 4 4 1 2 8 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 10: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 8 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 5 ↦ 5, 7 ↦ 6, 8 ↦ 7 }, it remains to prove termination of the 9-rule system { 0 1 2 2 3 ⟶ 0 1 2 3 4 , 5 1 2 2 3 ⟶ 5 1 2 3 4 , 2 3 4 4 1 →= 2 2 3 1 2 , 3 1 2 2 3 →= 3 1 2 3 4 , 4 1 2 2 3 →= 4 1 2 3 4 , 6 1 2 2 3 →= 6 1 2 3 4 , 1 2 2 2 2 →= 4 4 1 2 2 , 1 2 2 2 3 →= 4 4 1 2 3 , 1 2 2 2 7 →= 4 4 1 2 7 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 10: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 7 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 6 ↦ 5, 7 ↦ 6 }, it remains to prove termination of the 8-rule system { 0 1 2 2 3 ⟶ 0 1 2 3 4 , 2 3 4 4 1 →= 2 2 3 1 2 , 3 1 2 2 3 →= 3 1 2 3 4 , 4 1 2 2 3 →= 4 1 2 3 4 , 5 1 2 2 3 →= 5 1 2 3 4 , 1 2 2 2 2 →= 4 4 1 2 2 , 1 2 2 2 3 →= 4 4 1 2 3 , 1 2 2 2 6 →= 4 4 1 2 6 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 10: 0 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 0 ↦ 0, 1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4, 6 ↦ 5 }, it remains to prove termination of the 7-rule system { 0 1 2 2 3 ⟶ 0 1 2 3 4 , 2 3 4 4 1 →= 2 2 3 1 2 , 3 1 2 2 3 →= 3 1 2 3 4 , 4 1 2 2 3 →= 4 1 2 3 4 , 1 2 2 2 2 →= 4 4 1 2 2 , 1 2 2 2 3 →= 4 4 1 2 3 , 1 2 2 2 5 →= 4 4 1 2 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 10: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 1 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 2 ↦ 0, 3 ↦ 1, 4 ↦ 2, 1 ↦ 3, 5 ↦ 4 }, it remains to prove termination of the 6-rule system { 0 1 2 2 3 →= 0 0 1 3 0 , 1 3 0 0 1 →= 1 3 0 1 2 , 2 3 0 0 1 →= 2 3 0 1 2 , 3 0 0 0 0 →= 2 2 3 0 0 , 3 0 0 0 1 →= 2 2 3 0 1 , 3 0 0 0 4 →= 2 2 3 0 4 } The system is trivially terminating.