/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1 }, it remains to prove termination of the 3-rule system { 0 0 0 0 ⟶ 1 0 0 0 , 0 1 1 1 ⟶ 1 0 1 0 , 1 1 0 0 ⟶ 0 1 1 0 } Applying sparse tiling TRFC(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo the bijection { (0,0) ↦ 0, (0,1) ↦ 1, (1,0) ↦ 2, (0,3) ↦ 3, (1,1) ↦ 4, (2,0) ↦ 5, (2,1) ↦ 6 }, it remains to prove termination of the 24-rule system { 0 0 0 0 0 ⟶ 1 2 0 0 0 , 0 0 0 0 1 ⟶ 1 2 0 0 1 , 0 0 0 0 3 ⟶ 1 2 0 0 3 , 2 0 0 0 0 ⟶ 4 2 0 0 0 , 2 0 0 0 1 ⟶ 4 2 0 0 1 , 2 0 0 0 3 ⟶ 4 2 0 0 3 , 5 0 0 0 0 ⟶ 6 2 0 0 0 , 5 0 0 0 1 ⟶ 6 2 0 0 1 , 5 0 0 0 3 ⟶ 6 2 0 0 3 , 0 1 4 4 2 ⟶ 1 2 1 2 0 , 0 1 4 4 4 ⟶ 1 2 1 2 1 , 2 1 4 4 2 ⟶ 4 2 1 2 0 , 2 1 4 4 4 ⟶ 4 2 1 2 1 , 5 1 4 4 2 ⟶ 6 2 1 2 0 , 5 1 4 4 4 ⟶ 6 2 1 2 1 , 1 4 2 0 0 ⟶ 0 1 4 2 0 , 1 4 2 0 1 ⟶ 0 1 4 2 1 , 1 4 2 0 3 ⟶ 0 1 4 2 3 , 4 4 2 0 0 ⟶ 2 1 4 2 0 , 4 4 2 0 1 ⟶ 2 1 4 2 1 , 4 4 2 0 3 ⟶ 2 1 4 2 3 , 6 4 2 0 0 ⟶ 5 1 4 2 0 , 6 4 2 0 1 ⟶ 5 1 4 2 1 , 6 4 2 0 3 ⟶ 5 1 4 2 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 2 ↦ 0, 0 ↦ 1, 4 ↦ 2, 1 ↦ 3, 3 ↦ 4 }, it remains to prove termination of the 7-rule system { 0 1 1 1 1 ⟶ 2 0 1 1 1 , 0 1 1 1 3 ⟶ 2 0 1 1 3 , 0 1 1 1 4 ⟶ 2 0 1 1 4 , 0 3 2 2 0 ⟶ 2 0 3 0 1 , 3 2 0 1 1 ⟶ 1 3 2 0 1 , 3 2 0 1 3 ⟶ 1 3 2 0 3 , 3 2 0 1 4 ⟶ 1 3 2 0 4 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (3,↓) ↦ 2, (4,↓) ↦ 3, (2,↓) ↦ 4, (0,↓) ↦ 5, (3,↑) ↦ 6 }, it remains to prove termination of the 19-rule system { 0 1 1 1 1 ⟶ 0 1 1 1 , 0 1 1 1 2 ⟶ 0 1 1 2 , 0 1 1 1 3 ⟶ 0 1 1 3 , 0 2 4 4 5 ⟶ 0 2 5 1 , 0 2 4 4 5 ⟶ 6 5 1 , 0 2 4 4 5 ⟶ 0 1 , 6 4 5 1 1 ⟶ 6 4 5 1 , 6 4 5 1 1 ⟶ 0 1 , 6 4 5 1 2 ⟶ 6 4 5 2 , 6 4 5 1 2 ⟶ 0 2 , 6 4 5 1 3 ⟶ 6 4 5 3 , 6 4 5 1 3 ⟶ 0 3 , 5 1 1 1 1 →= 4 5 1 1 1 , 5 1 1 1 2 →= 4 5 1 1 2 , 5 1 1 1 3 →= 4 5 1 1 3 , 5 2 4 4 5 →= 4 5 2 5 1 , 2 4 5 1 1 →= 1 2 4 5 1 , 2 4 5 1 2 →= 1 2 4 5 2 , 2 4 5 1 3 →= 1 2 4 5 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 4 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 5 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ 6 ↦ ⎛ ⎞ ⎜ 1 1 ⎟ ⎜ 0 1 ⎟ ⎝ ⎠ After renaming modulo the bijection { 5 ↦ 0, 1 ↦ 1, 4 ↦ 2, 2 ↦ 3, 3 ↦ 4 }, it remains to prove termination of the 7-rule system { 0 1 1 1 1 →= 2 0 1 1 1 , 0 1 1 1 3 →= 2 0 1 1 3 , 0 1 1 1 4 →= 2 0 1 1 4 , 0 3 2 2 0 →= 2 0 3 0 1 , 3 2 0 1 1 →= 1 3 2 0 1 , 3 2 0 1 3 →= 1 3 2 0 3 , 3 2 0 1 4 →= 1 3 2 0 4 } The system is trivially terminating.