/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo the bijection { a ↦ 0, b ↦ 1, c ↦ 2 }, it remains to prove termination of the 1-rule system { 0 1 2 2 0 0 0 0 ⟶ 0 0 0 0 0 1 2 2 0 0 1 2 2 } Applying the dependency pairs transformation. Here, ↑ marks so-called defined symbols. After renaming modulo the bijection { (0,↑) ↦ 0, (1,↓) ↦ 1, (2,↓) ↦ 2, (0,↓) ↦ 3 }, it remains to prove termination of the 8-rule system { 0 1 2 2 3 3 3 3 ⟶ 0 3 3 3 3 1 2 2 3 3 1 2 2 , 0 1 2 2 3 3 3 3 ⟶ 0 3 3 3 1 2 2 3 3 1 2 2 , 0 1 2 2 3 3 3 3 ⟶ 0 3 3 1 2 2 3 3 1 2 2 , 0 1 2 2 3 3 3 3 ⟶ 0 3 1 2 2 3 3 1 2 2 , 0 1 2 2 3 3 3 3 ⟶ 0 1 2 2 3 3 1 2 2 , 0 1 2 2 3 3 3 3 ⟶ 0 3 1 2 2 , 0 1 2 2 3 3 3 3 ⟶ 0 1 2 2 , 3 1 2 2 3 3 3 3 →= 3 3 3 3 3 1 2 2 3 3 1 2 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 9: 0 ↦ ⎛ ⎞ ⎜ 1 0 1 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 1 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 ⎟ ⎜ 0 0 0 1 0 0 0 0 0 ⎟ ⎝ ⎠ 2 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 1 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 1 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎝ ⎠ 3 ↦ ⎛ ⎞ ⎜ 1 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 1 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 0 ⎟ ⎜ 0 0 0 0 0 0 1 0 0 ⎟ ⎜ 0 0 0 0 0 0 0 1 0 ⎟ ⎜ 0 0 0 0 0 0 0 0 1 ⎟ ⎜ 0 1 1 0 0 1 0 0 0 ⎟ ⎝ ⎠ After renaming modulo the bijection { 3 ↦ 0, 1 ↦ 1, 2 ↦ 2 }, it remains to prove termination of the 1-rule system { 0 1 2 2 0 0 0 0 →= 0 0 0 0 0 1 2 2 0 0 1 2 2 } The system is trivially terminating.