/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR X Y) (STRATEGY CONTEXTSENSITIVE (diff 1 2) (if 1) (leq 1 2) (p 1) (0) (false) (s 1) (true) ) (RULES diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X ) Problem 1: Innermost Equivalent Processor: -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> The context-sensitive term rewriting system is an orthogonal system. Therefore, innermost cs-termination implies cs-termination. Problem 1: Dependency Pairs Processor: -> Pairs: DIFF(X,Y) -> IF(leq(X,Y),0,s(diff(p(X),Y))) DIFF(X,Y) -> LEQ(X,Y) IF(false,X,Y) -> Y IF(true,X,Y) -> X LEQ(s(X),s(Y)) -> LEQ(X,Y) -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding Rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) s(diff(p(X),Y)) -> P(X) Problem 1: SCC Processor: -> Pairs: DIFF(X,Y) -> IF(leq(X,Y),0,s(diff(p(X),Y))) DIFF(X,Y) -> LEQ(X,Y) IF(false,X,Y) -> Y IF(true,X,Y) -> X LEQ(s(X),s(Y)) -> LEQ(X,Y) -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) s(diff(p(X),Y)) -> P(X) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LEQ(s(X),s(Y)) -> LEQ(X,Y) ->->-> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X ->->-> Unhiding rules: Empty ->->Cycle: ->->-> Pairs: DIFF(X,Y) -> IF(leq(X,Y),0,s(diff(p(X),Y))) IF(false,X,Y) -> Y IF(true,X,Y) -> X ->->-> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X ->->-> Unhiding rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) The problem is decomposed in 2 subproblems. Problem 1.1: SubNColl Processor: -> Pairs: LEQ(s(X),s(Y)) -> LEQ(X,Y) -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: Empty ->Projection: pi(LEQ) = 1 Problem 1.1: Basic Processor: -> Pairs: Empty -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: Empty -> Result: Set P is empty The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: DIFF(X,Y) -> IF(leq(X,Y),0,s(diff(p(X),Y))) IF(false,X,Y) -> Y IF(true,X,Y) -> X -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) -> Usable rules: leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [diff](X1,X2) = X1 + X2 + 1/2 [leq](X1,X2) = X1 [p](X) = 1/2.X [0] = 0 [false] = 1/2 [s](X) = 2.X + 1 [true] = 0 [DIFF](X1,X2) = 2.X1 + 2.X2 + 2 [IF](X1,X2,X3) = 1/2.X1 + 2.X2 + X3 Problem 1.2: SCC Processor: -> Pairs: DIFF(X,Y) -> IF(leq(X,Y),0,s(diff(p(X),Y))) IF(true,X,Y) -> X -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: DIFF(X,Y) -> IF(leq(X,Y),0,s(diff(p(X),Y))) IF(true,X,Y) -> X ->->-> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X ->->-> Unhiding rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) Problem 1.2: Reduction Pairs Processor: -> Pairs: DIFF(X,Y) -> IF(leq(X,Y),0,s(diff(p(X),Y))) IF(true,X,Y) -> X -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) -> Usable rules: leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [diff](X1,X2) = 2.X1 + 2.X2 [leq](X1,X2) = 2.X1 [p](X) = 2.X + 2 [0] = 0 [false] = 0 [s](X) = 2.X [true] = 0 [DIFF](X1,X2) = 2.X1 + 2 [IF](X1,X2,X3) = X1 + X2 + 1 Problem 1.2: Basic Processor: -> Pairs: IF(true,X,Y) -> X -> Rules: diff(X,Y) -> if(leq(X,Y),0,s(diff(p(X),Y))) if(false,X,Y) -> Y if(true,X,Y) -> X leq(0,Y) -> true leq(s(X),0) -> false leq(s(X),s(Y)) -> leq(X,Y) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: s(diff(p(X),Y)) -> DIFF(p(X),Y) -> Result: All pairs P are from Px1 The problem is finite.