/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination of the given CSR could be proven: (0) CSR (1) CSRInnermostProof [EQUIVALENT, 0 ms] (2) CSR (3) CSDependencyPairsProof [EQUIVALENT, 19 ms] (4) QCSDP (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QCSDP (8) QCSDPSubtermProof [EQUIVALENT, 0 ms] (9) QCSDP (10) PIsEmptyProof [EQUIVALENT, 0 ms] (11) YES (12) QCSDP (13) QCSDPSubtermProof [EQUIVALENT, 0 ms] (14) QCSDP (15) PIsEmptyProof [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: natsFrom(N) -> cons(N, natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> XS sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) The replacement map contains the following entries: natsFrom: {1} cons: {1} s: {1} fst: {1} pair: {1, 2} snd: {1} splitAt: {1, 2} 0: empty set nil: empty set u: {1} head: {1} tail: {1} sel: {1, 2} afterNth: {1, 2} take: {1, 2} ---------------------------------------- (1) CSRInnermostProof (EQUIVALENT) The CSR is orthogonal. By [CS_Inn] we can switch to innermost. ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: natsFrom(N) -> cons(N, natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> XS sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) The replacement map contains the following entries: natsFrom: {1} cons: {1} s: {1} fst: {1} pair: {1, 2} snd: {1} splitAt: {1, 2} 0: empty set nil: empty set u: {1} head: {1} tail: {1} sel: {1, 2} afterNth: {1, 2} take: {1, 2} Innermost Strategy. ---------------------------------------- (3) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (4) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2, SPLITAT_2, HEAD_1, SEL_2, AFTERNTH_2, FST_1, TAKE_2, SND_1, TAIL_1, NATSFROM_1} are replacing on all positions. For all symbols f in {cons_2, u_4, U_4} we have mu(f) = {1}. The symbols in {U'_1} are not replacing on any position. The ordinary context-sensitive dependency pairs DP_o are: SPLITAT(s(N), cons(X, XS)) -> U(splitAt(N, XS), N, X, XS) SPLITAT(s(N), cons(X, XS)) -> SPLITAT(N, XS) SEL(N, XS) -> HEAD(afterNth(N, XS)) SEL(N, XS) -> AFTERNTH(N, XS) TAKE(N, XS) -> FST(splitAt(N, XS)) TAKE(N, XS) -> SPLITAT(N, XS) AFTERNTH(N, XS) -> SND(splitAt(N, XS)) AFTERNTH(N, XS) -> SPLITAT(N, XS) The collapsing dependency pairs are DP_c: SPLITAT(s(N), cons(X, XS)) -> XS U(pair(YS, ZS), N, X, XS) -> X TAIL(cons(N, XS)) -> XS The hidden terms of R are: natsFrom(s(x0)) Every hiding context is built from: aprove.DPFramework.CSDPProblem.QCSDPProblem$1@38db3149 aprove.DPFramework.CSDPProblem.QCSDPProblem$1@6b1ab3db Hence, the new unhiding pairs DP_u are : SPLITAT(s(N), cons(X, XS)) -> U'(XS) U(pair(YS, ZS), N, X, XS) -> U'(X) TAIL(cons(N, XS)) -> U'(XS) U'(s(x_0)) -> U'(x_0) U'(natsFrom(x_0)) -> U'(x_0) U'(natsFrom(s(x0))) -> NATSFROM(s(x0)) The TRS R consists of the following rules: natsFrom(N) -> cons(N, natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> XS sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) The set Q consists of the following terms: natsFrom(x0) fst(pair(x0, x1)) snd(pair(x0, x1)) splitAt(0, x0) splitAt(s(x0), cons(x1, x2)) u(pair(x0, x1), x2, x3, x4) head(cons(x0, x1)) tail(cons(x0, x1)) sel(x0, x1) take(x0, x1) afterNth(x0, x1) ---------------------------------------- (5) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 2 SCCs with 9 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2} are replacing on all positions. For all symbols f in {cons_2, u_4} we have mu(f) = {1}. The symbols in {U'_1} are not replacing on any position. The TRS P consists of the following rules: U'(s(x_0)) -> U'(x_0) U'(natsFrom(x_0)) -> U'(x_0) The TRS R consists of the following rules: natsFrom(N) -> cons(N, natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> XS sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) The set Q consists of the following terms: natsFrom(x0) fst(pair(x0, x1)) snd(pair(x0, x1)) splitAt(0, x0) splitAt(s(x0), cons(x1, x2)) u(pair(x0, x1), x2, x3, x4) head(cons(x0, x1)) tail(cons(x0, x1)) sel(x0, x1) take(x0, x1) afterNth(x0, x1) ---------------------------------------- (8) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. U'(s(x_0)) -> U'(x_0) U'(natsFrom(x_0)) -> U'(x_0) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. U'(x1) = x1 Subterm Order ---------------------------------------- (9) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2} are replacing on all positions. For all symbols f in {cons_2, u_4} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: natsFrom(N) -> cons(N, natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> XS sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) The set Q consists of the following terms: natsFrom(x0) fst(pair(x0, x1)) snd(pair(x0, x1)) splitAt(0, x0) splitAt(s(x0), cons(x1, x2)) u(pair(x0, x1), x2, x3, x4) head(cons(x0, x1)) tail(cons(x0, x1)) sel(x0, x1) take(x0, x1) afterNth(x0, x1) ---------------------------------------- (10) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2, SPLITAT_2} are replacing on all positions. For all symbols f in {cons_2, u_4} we have mu(f) = {1}. The TRS P consists of the following rules: SPLITAT(s(N), cons(X, XS)) -> SPLITAT(N, XS) The TRS R consists of the following rules: natsFrom(N) -> cons(N, natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> XS sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) The set Q consists of the following terms: natsFrom(x0) fst(pair(x0, x1)) snd(pair(x0, x1)) splitAt(0, x0) splitAt(s(x0), cons(x1, x2)) u(pair(x0, x1), x2, x3, x4) head(cons(x0, x1)) tail(cons(x0, x1)) sel(x0, x1) take(x0, x1) afterNth(x0, x1) ---------------------------------------- (13) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. SPLITAT(s(N), cons(X, XS)) -> SPLITAT(N, XS) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. SPLITAT(x1, x2) = x1 Subterm Order ---------------------------------------- (14) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {natsFrom_1, s_1, fst_1, pair_2, snd_1, splitAt_2, head_1, tail_1, sel_2, afterNth_2, take_2} are replacing on all positions. For all symbols f in {cons_2, u_4} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: natsFrom(N) -> cons(N, natsFrom(s(N))) fst(pair(XS, YS)) -> XS snd(pair(XS, YS)) -> YS splitAt(0, XS) -> pair(nil, XS) splitAt(s(N), cons(X, XS)) -> u(splitAt(N, XS), N, X, XS) u(pair(YS, ZS), N, X, XS) -> pair(cons(X, YS), ZS) head(cons(N, XS)) -> N tail(cons(N, XS)) -> XS sel(N, XS) -> head(afterNth(N, XS)) take(N, XS) -> fst(splitAt(N, XS)) afterNth(N, XS) -> snd(splitAt(N, XS)) The set Q consists of the following terms: natsFrom(x0) fst(pair(x0, x1)) snd(pair(x0, x1)) splitAt(0, x0) splitAt(s(x0), cons(x1, x2)) u(pair(x0, x1), x2, x3, x4) head(cons(x0, x1)) tail(cons(x0, x1)) sel(x0, x1) take(x0, x1) afterNth(x0, x1) ---------------------------------------- (15) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (16) YES