/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination of the given CSR could be proven: (0) CSR (1) CSDependencyPairsProof [EQUIVALENT, 0 ms] (2) QCSDP (3) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QCSDP (6) QCSDPSubtermProof [EQUIVALENT, 0 ms] (7) QCSDP (8) PIsEmptyProof [EQUIVALENT, 0 ms] (9) YES (10) QCSDP (11) QCSDPSubtermProof [EQUIVALENT, 0 ms] (12) QCSDP (13) PIsEmptyProof [EQUIVALENT, 0 ms] (14) YES (15) QCSDP (16) QCSDPSubtermProof [EQUIVALENT, 0 ms] (17) QCSDP (18) PIsEmptyProof [EQUIVALENT, 0 ms] (19) YES (20) QCSDP (21) QCSDPSubtermProof [EQUIVALENT, 0 ms] (22) QCSDP (23) PIsEmptyProof [EQUIVALENT, 0 ms] (24) YES ---------------------------------------- (0) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X The replacement map contains the following entries: terms: {1} cons: {1} recip: {1} sqr: {1} s: {1} 0: empty set add: {1, 2} dbl: {1} first: {1, 2} nil: empty set half: {1} ---------------------------------------- (1) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (2) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1, SQR_1, TERMS_1, ADD_2, DBL_1, HALF_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The ordinary context-sensitive dependency pairs DP_o are: TERMS(N) -> SQR(N) SQR(s(X)) -> ADD(sqr(X), dbl(X)) SQR(s(X)) -> SQR(X) SQR(s(X)) -> DBL(X) DBL(s(X)) -> DBL(X) ADD(s(X), Y) -> ADD(X, Y) HALF(s(s(X))) -> HALF(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (3) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 4 SCCs with 3 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1, HALF_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: HALF(s(s(X))) -> HALF(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (6) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. HALF(s(s(X))) -> HALF(X) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. HALF(x1) = x1 Subterm Order ---------------------------------------- (7) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (8) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1, DBL_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: DBL(s(X)) -> DBL(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (11) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. DBL(s(X)) -> DBL(X) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. DBL(x1) = x1 Subterm Order ---------------------------------------- (12) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (13) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1, ADD_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: ADD(s(X), Y) -> ADD(X, Y) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (16) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. ADD(s(X), Y) -> ADD(X, Y) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. ADD(x1, x2) = x1 Subterm Order ---------------------------------------- (17) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (18) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1, SQR_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: SQR(s(X)) -> SQR(X) The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (21) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. SQR(s(X)) -> SQR(X) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. SQR(x1) = x1 Subterm Order ---------------------------------------- (22) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {terms_1, recip_1, sqr_1, s_1, add_2, dbl_1, first_2, half_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: terms(N) -> cons(recip(sqr(N)), terms(s(N))) sqr(0) -> 0 sqr(s(X)) -> s(add(sqr(X), dbl(X))) dbl(0) -> 0 dbl(s(X)) -> s(s(dbl(X))) add(0, X) -> X add(s(X), Y) -> s(add(X, Y)) first(0, X) -> nil first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) half(0) -> 0 half(s(0)) -> 0 half(s(s(X))) -> s(half(X)) half(dbl(X)) -> X Q is empty. ---------------------------------------- (23) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (24) YES