/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR N X Y Z) (STRATEGY CONTEXTSENSITIVE (2ndsneg 1 2) (2ndspos 1 2) (from 1) (pi 1) (plus 1 2) (square 1) (times 1 2) (0) (cons 1) (negrecip 1) (posrecip 1) (rcons 1 2) (rnil) (s 1) ) (RULES 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ) Problem 1: Innermost Equivalent Processor: -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> The context-sensitive term rewriting system is an orthogonal system. Therefore, innermost cs-termination implies cs-termination. Problem 1: Dependency Pairs Processor: -> Pairs: 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> 2NDSPOS(N,Z) 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> Y 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> Z 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> 2NDSNEG(N,Z) 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> Y 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> Z PI(X) -> 2NDSPOS(X,from(0)) PI(X) -> FROM(0) PLUS(s(X),Y) -> PLUS(X,Y) SQUARE(X) -> TIMES(X,X) TIMES(s(X),Y) -> PLUS(Y,times(X,Y)) TIMES(s(X),Y) -> TIMES(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding Rules: from(s(X)) -> FROM(s(X)) Problem 1: SCC Processor: -> Pairs: 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> 2NDSPOS(N,Z) 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> Y 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> Z 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> 2NDSNEG(N,Z) 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> Y 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> Z PI(X) -> 2NDSPOS(X,from(0)) PI(X) -> FROM(0) PLUS(s(X),Y) -> PLUS(X,Y) SQUARE(X) -> TIMES(X,X) TIMES(s(X),Y) -> PLUS(Y,times(X,Y)) TIMES(s(X),Y) -> TIMES(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding rules: from(s(X)) -> FROM(s(X)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: PLUS(s(X),Y) -> PLUS(X,Y) ->->-> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->->-> Unhiding rules: Empty ->->Cycle: ->->-> Pairs: TIMES(s(X),Y) -> TIMES(X,Y) ->->-> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->->-> Unhiding rules: Empty ->->Cycle: ->->-> Pairs: 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> 2NDSPOS(N,Z) 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> 2NDSNEG(N,Z) ->->-> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) ->->-> Unhiding rules: Empty The problem is decomposed in 3 subproblems. Problem 1.1: SubNColl Processor: -> Pairs: PLUS(s(X),Y) -> PLUS(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding rules: Empty ->Projection: pi(PLUS) = 1 Problem 1.1: Basic Processor: -> Pairs: Empty -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding rules: Empty -> Result: Set P is empty The problem is finite. Problem 1.2: SubNColl Processor: -> Pairs: TIMES(s(X),Y) -> TIMES(X,Y) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding rules: Empty ->Projection: pi(TIMES) = 1 Problem 1.2: Basic Processor: -> Pairs: Empty -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding rules: Empty -> Result: Set P is empty The problem is finite. Problem 1.3: SubNColl Processor: -> Pairs: 2NDSNEG(s(N),cons(X,cons(Y,Z))) -> 2NDSPOS(N,Z) 2NDSPOS(s(N),cons(X,cons(Y,Z))) -> 2NDSNEG(N,Z) -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding rules: Empty ->Projection: pi(2NDSNEG) = 1 pi(2NDSPOS) = 1 Problem 1.3: Basic Processor: -> Pairs: Empty -> Rules: 2ndsneg(0,Z) -> rnil 2ndsneg(s(N),cons(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,Z)) 2ndspos(0,Z) -> rnil 2ndspos(s(N),cons(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,Z)) from(X) -> cons(X,from(s(X))) pi(X) -> 2ndspos(X,from(0)) plus(0,Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) square(X) -> times(X,X) times(0,Y) -> 0 times(s(X),Y) -> plus(Y,times(X,Y)) -> Unhiding rules: Empty -> Result: Set P is empty The problem is finite.