/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination of the given CSR could be proven: (0) CSR (1) CSRInnermostProof [EQUIVALENT, 0 ms] (2) CSR (3) CSDependencyPairsProof [EQUIVALENT, 0 ms] (4) QCSDP (5) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QCSDP (8) QCSDPSubtermProof [EQUIVALENT, 1 ms] (9) QCSDP (10) PIsEmptyProof [EQUIVALENT, 0 ms] (11) YES (12) QCSDP (13) QCSDPSubtermProof [EQUIVALENT, 0 ms] (14) QCSDP (15) PIsEmptyProof [EQUIVALENT, 0 ms] (16) YES (17) QCSDP (18) QCSDPSubtermProof [EQUIVALENT, 0 ms] (19) QCSDP (20) PIsEmptyProof [EQUIVALENT, 0 ms] (21) YES (22) QCSDP (23) QCSDPSubtermProof [EQUIVALENT, 0 ms] (24) QCSDP (25) PIsEmptyProof [EQUIVALENT, 0 ms] (26) YES ---------------------------------------- (0) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The replacement map contains the following entries: from: {1} cons: {1} s: {1} 2ndspos: {1, 2} 0: empty set rnil: empty set rcons: {1, 2} posrecip: {1} 2ndsneg: {1, 2} negrecip: {1} pi: {1} plus: {1, 2} times: {1, 2} square: {1} ---------------------------------------- (1) CSRInnermostProof (EQUIVALENT) The CSR is orthogonal. By [CS_Inn] we can switch to innermost. ---------------------------------------- (2) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The replacement map contains the following entries: from: {1} cons: {1} s: {1} 2ndspos: {1, 2} 0: empty set rnil: empty set rcons: {1, 2} posrecip: {1} 2ndsneg: {1, 2} negrecip: {1} pi: {1} plus: {1, 2} times: {1, 2} square: {1} Innermost Strategy. ---------------------------------------- (3) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (4) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSNEG_2, 2NDSPOS_2, PI_1, FROM_1, PLUS_2, TIMES_2, SQUARE_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The symbols in {U_1} are not replacing on any position. The ordinary context-sensitive dependency pairs DP_o are: 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> 2NDSNEG(N, Z) 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> 2NDSPOS(N, Z) PI(X) -> 2NDSPOS(X, from(0)) PI(X) -> FROM(0) PLUS(s(X), Y) -> PLUS(X, Y) TIMES(s(X), Y) -> PLUS(Y, times(X, Y)) TIMES(s(X), Y) -> TIMES(X, Y) SQUARE(X) -> TIMES(X, X) The collapsing dependency pairs are DP_c: 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> Y 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> Z 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> Y 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> Z The hidden terms of R are: from(s(x0)) Every hiding context is built from: aprove.DPFramework.CSDPProblem.QCSDPProblem$1@4961242e aprove.DPFramework.CSDPProblem.QCSDPProblem$1@41139c7b Hence, the new unhiding pairs DP_u are : 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> U(Y) 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> U(Z) 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> U(Y) 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> U(Z) U(s(x_0)) -> U(x_0) U(from(x_0)) -> U(x_0) U(from(s(x0))) -> FROM(s(x0)) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (5) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 4 SCCs with 7 less nodes. The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons(z1, cons(z2, z3))) -> 2NDSNEG(z0, z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons(x_2, cons(z2, z3))) does not unify with 2NDSPOS(x0, from(0)). R' = ( cons(X, from(s(X))), from(X)) The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons(z1, cons(z2, z3))) -> U(z2) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons(x_2, cons(z2, z3))) does not unify with 2NDSPOS(x0, from(0)). R' = ( cons(X, from(s(X))), from(X)) The rules PI(x0) -> 2NDSPOS(x0, from(0)) and 2NDSPOS(s(z0), cons(z1, cons(z2, z3))) -> U(z3) form no chain, because ECap^mu_R'(2NDSPOS(s(z0), cons(z1, cons(z2, z3)))) = 2NDSPOS(s(x_1), cons(x_2, cons(z2, z3))) does not unify with 2NDSPOS(x0, from(0)). R' = ( cons(X, from(s(X))), from(X)) ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The symbols in {U_1} are not replacing on any position. The TRS P consists of the following rules: U(s(x_0)) -> U(x_0) U(from(x_0)) -> U(x_0) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (8) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. U(s(x_0)) -> U(x_0) U(from(x_0)) -> U(x_0) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. U(x1) = x1 Subterm Order ---------------------------------------- (9) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (10) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, PLUS_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: PLUS(s(X), Y) -> PLUS(X, Y) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (13) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. PLUS(s(X), Y) -> PLUS(X, Y) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. PLUS(x1, x2) = x1 Subterm Order ---------------------------------------- (14) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (15) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (16) YES ---------------------------------------- (17) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, TIMES_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: TIMES(s(X), Y) -> TIMES(X, Y) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (18) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. TIMES(s(X), Y) -> TIMES(X, Y) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. TIMES(x1, x2) = x1 Subterm Order ---------------------------------------- (19) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (20) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (21) YES ---------------------------------------- (22) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1, 2NDSPOS_2, 2NDSNEG_2} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> 2NDSNEG(N, Z) The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (23) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. 2NDSNEG(s(N), cons(X, cons(Y, Z))) -> 2NDSPOS(N, Z) 2NDSPOS(s(N), cons(X, cons(Y, Z))) -> 2NDSNEG(N, Z) The remaining pairs can at least be oriented weakly. none Used ordering: Combined order from the following AFS and order. 2NDSPOS(x1, x2) = x1 2NDSNEG(x1, x2) = x1 Subterm Order ---------------------------------------- (24) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {from_1, s_1, 2ndspos_2, rcons_2, posrecip_1, 2ndsneg_2, negrecip_1, pi_1, plus_2, times_2, square_1} are replacing on all positions. For all symbols f in {cons_2} we have mu(f) = {1}. The TRS P consists of the following rules: none The TRS R consists of the following rules: from(X) -> cons(X, from(s(X))) 2ndspos(0, Z) -> rnil 2ndspos(s(N), cons(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2ndsneg(0, Z) -> rnil 2ndsneg(s(N), cons(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) pi(X) -> 2ndspos(X, from(0)) plus(0, Y) -> Y plus(s(X), Y) -> s(plus(X, Y)) times(0, Y) -> 0 times(s(X), Y) -> plus(Y, times(X, Y)) square(X) -> times(X, X) The set Q consists of the following terms: from(x0) 2ndspos(0, x0) 2ndspos(s(x0), cons(x1, cons(x2, x3))) 2ndsneg(0, x0) 2ndsneg(s(x0), cons(x1, cons(x2, x3))) pi(x0) plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) square(x0) ---------------------------------------- (25) PIsEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R,mu)-chain. ---------------------------------------- (26) YES