/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: c69e44bd14796315568835c1ffa2502984884775 mhark 20210624 unpublished Termination of the given CSR could be proven: (0) CSR (1) CSDependencyPairsProof [EQUIVALENT, 51 ms] (2) QCSDP (3) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QCSDP (6) QCSDPReductionPairProof [EQUIVALENT, 73 ms] (7) QCSDP (8) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (9) AND (10) QCSDP (11) QCSDPReductionPairProof [EQUIVALENT, 305 ms] (12) QCSDP (13) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE (15) QCSDP (16) QCSDPReductionPairProof [EQUIVALENT, 292 ms] (17) QCSDP (18) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (19) TRUE (20) QCSDP (21) QCSDPSubtermProof [EQUIVALENT, 0 ms] (22) QCSDP (23) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (24) TRUE (25) QCSDP (26) QCSDPSubtermProof [EQUIVALENT, 0 ms] (27) QCSDP (28) QCSDependencyGraphProof [EQUIVALENT, 0 ms] (29) TRUE ---------------------------------------- (0) Obligation: Context-sensitive rewrite system: The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The replacement map contains the following entries: U11: {1} tt: empty set U12: {1} isNat: empty set U13: {1} U21: {1} U22: {1} U31: {1} U32: {1} U33: {1} U41: {1} U51: {1} s: {1} plus: {1, 2} U61: {1} 0: empty set U71: {1} x: {1, 2} and: {1} isNatKind: empty set ---------------------------------------- (1) CSDependencyPairsProof (EQUIVALENT) Using Improved CS-DPs [LPAR08] we result in the following initial Q-CSDP problem. ---------------------------------------- (2) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, U13'_1, U22'_1, U33'_1, PLUS_2, X_2, U61'_1} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U11'_3, U21'_2, U32'_2, U31'_3, U51'_3, U71'_3, AND_2, U41'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1, ISNATKIND_1, U_1} are not replacing on any position. The ordinary context-sensitive dependency pairs DP_o are: U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U11'(tt, V1, V2) -> ISNAT(V1) U12'(tt, V2) -> U13'(isNat(V2)) U12'(tt, V2) -> ISNAT(V2) U21'(tt, V1) -> U22'(isNat(V1)) U21'(tt, V1) -> ISNAT(V1) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U31'(tt, V1, V2) -> ISNAT(V1) U32'(tt, V2) -> U33'(isNat(V2)) U32'(tt, V2) -> ISNAT(V2) U51'(tt, M, N) -> PLUS(N, M) U71'(tt, M, N) -> PLUS(x(N, M), N) U71'(tt, M, N) -> X(N, M) ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) ISNAT(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(plus(V1, V2)) -> ISNATKIND(V1) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) ISNAT(s(V1)) -> ISNATKIND(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) ISNAT(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(x(V1, V2)) -> ISNATKIND(V1) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) PLUS(N, 0) -> U41'(and(isNat(N), isNatKind(N)), N) PLUS(N, 0) -> AND(isNat(N), isNatKind(N)) PLUS(N, 0) -> ISNAT(N) PLUS(N, s(M)) -> U51'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) PLUS(N, s(M)) -> AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))) PLUS(N, s(M)) -> AND(isNat(M), isNatKind(M)) PLUS(N, s(M)) -> ISNAT(M) X(N, 0) -> U61'(and(isNat(N), isNatKind(N))) X(N, 0) -> AND(isNat(N), isNatKind(N)) X(N, 0) -> ISNAT(N) X(N, s(M)) -> U71'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) X(N, s(M)) -> AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))) X(N, s(M)) -> AND(isNat(M), isNatKind(M)) X(N, s(M)) -> ISNAT(M) The collapsing dependency pairs are DP_c: U41'(tt, N) -> N U51'(tt, M, N) -> N U51'(tt, M, N) -> M U71'(tt, M, N) -> N U71'(tt, M, N) -> M AND(tt, X) -> X The hidden terms of R are: isNatKind(x0) and(isNat(x0), isNatKind(x0)) isNat(x0) Every hiding context is built from: aprove.DPFramework.CSDPProblem.QCSDPProblem$1@1065bad Hence, the new unhiding pairs DP_u are : U41'(tt, N) -> U(N) U51'(tt, M, N) -> U(N) U51'(tt, M, N) -> U(M) U71'(tt, M, N) -> U(N) U71'(tt, M, N) -> U(M) AND(tt, X) -> U(X) U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) U(and(isNat(x0), isNatKind(x0))) -> AND(isNat(x0), isNatKind(x0)) U(isNat(x0)) -> ISNAT(x0) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (3) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 3 SCCs with 21 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U11'_3, AND_2, U21'_2, U31'_3, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1, U_1, ISNATKIND_1} are not replacing on any position. The TRS P consists of the following rules: U12'(tt, V2) -> ISNAT(V2) ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U11'(tt, V1, V2) -> ISNAT(V1) ISNAT(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) AND(tt, X) -> U(X) U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) U(and(isNat(x0), isNatKind(x0))) -> AND(isNat(x0), isNatKind(x0)) U(isNat(x0)) -> ISNAT(x0) ISNAT(plus(V1, V2)) -> ISNATKIND(V1) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) U21'(tt, V1) -> ISNAT(V1) ISNAT(s(V1)) -> ISNATKIND(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U32'(tt, V2) -> ISNAT(V2) ISNAT(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(x(V1, V2)) -> ISNATKIND(V1) U31'(tt, V1, V2) -> ISNAT(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (6) QCSDPReductionPairProof (EQUIVALENT) Using the order Polynomial interpretation [POLO]: POL(0) = 0 POL(AND(x_1, x_2)) = x_1 + 2*x_2 POL(ISNAT(x_1)) = 0 POL(ISNATKIND(x_1)) = 0 POL(U(x_1)) = 2*x_1 POL(U11(x_1, x_2, x_3)) = 0 POL(U11'(x_1, x_2, x_3)) = 0 POL(U12(x_1, x_2)) = 0 POL(U12'(x_1, x_2)) = 0 POL(U13(x_1)) = 0 POL(U21(x_1, x_2)) = 0 POL(U21'(x_1, x_2)) = 0 POL(U22(x_1)) = 0 POL(U31(x_1, x_2, x_3)) = 2 POL(U31'(x_1, x_2, x_3)) = 0 POL(U32(x_1, x_2)) = 0 POL(U32'(x_1, x_2)) = 0 POL(U33(x_1)) = 0 POL(U41(x_1, x_2)) = x_2 POL(U51(x_1, x_2, x_3)) = 0 POL(U61(x_1)) = 0 POL(U71(x_1, x_2, x_3)) = 0 POL(and(x_1, x_2)) = x_1 + 2*x_2 POL(isNat(x_1)) = 2 POL(isNatKind(x_1)) = 0 POL(plus(x_1, x_2)) = x_1 POL(s(x_1)) = 0 POL(tt) = 0 POL(x(x_1, x_2)) = 0 the following usable rules plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U41(tt, N) -> N and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U51(tt, M, N) -> s(plus(N, M)) could all be oriented weakly. Furthermore, the pairs U(and(isNat(x0), isNatKind(x0))) -> AND(isNat(x0), isNatKind(x0)) U(isNat(x0)) -> ISNAT(x0) could be oriented strictly and thus removed by the CS-Reduction Pair Processor [LPAR08,DA_EMMES]. ---------------------------------------- (7) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U11'_3, AND_2, U21'_2, U31'_3, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1, U_1, ISNATKIND_1} are not replacing on any position. The TRS P consists of the following rules: U12'(tt, V2) -> ISNAT(V2) ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U11'(tt, V1, V2) -> ISNAT(V1) ISNAT(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) AND(tt, X) -> U(X) U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) ISNAT(plus(V1, V2)) -> ISNATKIND(V1) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) U21'(tt, V1) -> ISNAT(V1) ISNAT(s(V1)) -> ISNATKIND(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U32'(tt, V2) -> ISNAT(V2) ISNAT(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNAT(x(V1, V2)) -> ISNATKIND(V1) U31'(tt, V1, V2) -> ISNAT(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (8) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 2 SCCs with 5 less nodes. ---------------------------------------- (9) Complex Obligation (AND) ---------------------------------------- (10) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, AND_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, U_1, ISNATKIND_1} are not replacing on any position. The TRS P consists of the following rules: U(and(x_0, x_1)) -> U(x_0) U(isNatKind(x0)) -> ISNATKIND(x0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) AND(tt, X) -> U(X) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (11) QCSDPReductionPairProof (EQUIVALENT) Using the order U/1(YES) and/2(YES,YES) isNatKind/1)YES( ISNATKIND/1(YES) plus/2(YES,YES) AND/2(NO,YES) tt/0) s/1(YES) x/2(YES,YES) 0/0) U41/2)NO,YES( isNat/1)YES( U51/3(YES,YES,YES) U11/3(NO,NO,NO) U21/2(NO,YES) U31/3(NO,NO,YES) U12/2(NO,NO) U13/1(NO) U22/1)YES( U61/1(YES) U71/3(YES,YES,YES) U32/2)NO,YES( U33/1)YES( Quasi precedence: [U_1, ISNATKIND_1, AND_1, x_2, U71_3] > [plus_2, U51_3, U11] > [and_2, tt, s_1, U21_1, U12, U13] [U_1, ISNATKIND_1, AND_1, x_2, U71_3] > [0, U61_1] > [and_2, tt, s_1, U21_1, U12, U13] [U_1, ISNATKIND_1, AND_1, x_2, U71_3] > U31_1 Status: U_1: multiset status and_2: [1,2] ISNATKIND_1: multiset status plus_2: [1,2] AND_1: multiset status tt: multiset status s_1: [1] x_2: [2,1] 0: multiset status U51_3: [3,2,1] U11: [] U21_1: [1] U31_1: multiset status U12: [] U13: [] U61_1: multiset status U71_3: [2,3,1] the following usable rules and(tt, X) -> X isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U41(tt, N) -> N isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U51(tt, M, N) -> s(plus(N, M)) could all be oriented weakly. Furthermore, the pairs U(and(x_0, x_1)) -> U(x_0) ISNATKIND(plus(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(plus(V1, V2)) -> ISNATKIND(V1) ISNATKIND(s(V1)) -> ISNATKIND(V1) ISNATKIND(x(V1, V2)) -> AND(isNatKind(V1), isNatKind(V2)) ISNATKIND(x(V1, V2)) -> ISNATKIND(V1) could be oriented strictly and thus removed by the CS-Reduction Pair Processor [LPAR08,DA_EMMES]. ---------------------------------------- (12) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, AND_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNATKIND_1, U_1} are not replacing on any position. The TRS P consists of the following rules: U(isNatKind(x0)) -> ISNATKIND(x0) AND(tt, X) -> U(X) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (13) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 2 less nodes. ---------------------------------------- (14) TRUE ---------------------------------------- (15) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U11'_3, U12'_2, U21'_2, U31'_3, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1} are not replacing on any position. The TRS P consists of the following rules: ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) U12'(tt, V2) -> ISNAT(V2) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) U21'(tt, V1) -> ISNAT(V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U32'(tt, V2) -> ISNAT(V2) U31'(tt, V1, V2) -> ISNAT(V1) U11'(tt, V1, V2) -> ISNAT(V1) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (16) QCSDPReductionPairProof (EQUIVALENT) Using the order ISNAT/1(YES) plus/2(YES,YES) U11'/3(NO,YES,YES) and/2)NO,YES( isNatKind/1(YES) tt/0) U12'/2(NO,YES) isNat/1(NO) s/1(YES) U21'/2(NO,YES) x/2(YES,YES) U31'/3(YES,YES,YES) U32'/2(NO,YES) 0/0) U41/2(YES,YES) U51/3(YES,YES,YES) U11/3(NO,NO,NO) U21/2(NO,NO) U31/3(NO,NO,NO) U12/2(NO,NO) U13/1(NO) U61/1(NO) U71/3(YES,YES,YES) U22/1)YES( U32/2(NO,NO) U33/1(NO) Quasi precedence: [ISNAT_1, U11'_2, U12'_1, U21'_1, x_2, U31'_3, U32'_1, U71_3] > [plus_2, isNatKind_1, isNat, U51_3, U21] > s_1 > U41_2 [ISNAT_1, U11'_2, U12'_1, U21'_1, x_2, U31'_3, U32'_1, U71_3] > [plus_2, isNatKind_1, isNat, U51_3, U21] > U11 > U12 > U13 > [tt, 0, U61] > U41_2 [ISNAT_1, U11'_2, U12'_1, U21'_1, x_2, U31'_3, U32'_1, U71_3] > [plus_2, isNatKind_1, isNat, U51_3, U21] > U31 > U32 > U33 > [tt, 0, U61] > U41_2 Status: ISNAT_1: multiset status plus_2: [1,2] U11'_2: multiset status isNatKind_1: [1] tt: multiset status U12'_1: multiset status isNat: multiset status s_1: [1] U21'_1: multiset status x_2: [2,1] U31'_3: multiset status U32'_1: multiset status 0: multiset status U41_2: [1,2] U51_3: [3,2,1] U11: multiset status U21: multiset status U31: [] U12: [] U13: multiset status U61: multiset status U71_3: [2,3,1] U32: multiset status U33: multiset status the following usable rules plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U41(tt, N) -> N and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U51(tt, M, N) -> s(plus(N, M)) could all be oriented weakly. Furthermore, the pairs ISNAT(plus(V1, V2)) -> U11'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U11'(tt, V1, V2) -> U12'(isNat(V1), V2) ISNAT(s(V1)) -> U21'(isNatKind(V1), V1) ISNAT(x(V1, V2)) -> U31'(and(isNatKind(V1), isNatKind(V2)), V1, V2) U31'(tt, V1, V2) -> U32'(isNat(V1), V2) U31'(tt, V1, V2) -> ISNAT(V1) U11'(tt, V1, V2) -> ISNAT(V1) could be oriented strictly and thus removed by the CS-Reduction Pair Processor [LPAR08,DA_EMMES]. ---------------------------------------- (17) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U12'_2, U21'_2, U32'_2} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1, ISNAT_1} are not replacing on any position. The TRS P consists of the following rules: U12'(tt, V2) -> ISNAT(V2) U21'(tt, V1) -> ISNAT(V1) U32'(tt, V2) -> ISNAT(V2) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (18) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 3 less nodes. ---------------------------------------- (19) TRUE ---------------------------------------- (20) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, PLUS_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U51'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: PLUS(N, s(M)) -> U51'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) U51'(tt, M, N) -> PLUS(N, M) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (21) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. PLUS(N, s(M)) -> U51'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The remaining pairs can at least be oriented weakly. U51'(tt, M, N) -> PLUS(N, M) Used ordering: Combined order from the following AFS and order. U51'(x1, x2, x3) = x2 PLUS(x1, x2) = x2 Subterm Order ---------------------------------------- (22) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, PLUS_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U51'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: U51'(tt, M, N) -> PLUS(N, M) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (23) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 1 less node. ---------------------------------------- (24) TRUE ---------------------------------------- (25) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, X_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U71'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: U71'(tt, M, N) -> X(N, M) X(N, s(M)) -> U71'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (26) QCSDPSubtermProof (EQUIVALENT) We use the subterm processor [DA_EMMES]. The following pairs can be oriented strictly and are deleted. X(N, s(M)) -> U71'(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) The remaining pairs can at least be oriented weakly. U71'(tt, M, N) -> X(N, M) Used ordering: Combined order from the following AFS and order. X(x1, x2) = x2 U71'(x1, x2, x3) = x2 Subterm Order ---------------------------------------- (27) Obligation: Q-restricted context-sensitive dependency pair problem: The symbols in {U13_1, U22_1, U33_1, s_1, plus_2, U61_1, x_2, X_2} are replacing on all positions. For all symbols f in {U11_3, U12_2, U21_2, U31_3, U32_2, U41_2, U51_3, U71_3, and_2, U71'_3} we have mu(f) = {1}. The symbols in {isNat_1, isNatKind_1} are not replacing on any position. The TRS P consists of the following rules: U71'(tt, M, N) -> X(N, M) The TRS R consists of the following rules: U11(tt, V1, V2) -> U12(isNat(V1), V2) U12(tt, V2) -> U13(isNat(V2)) U13(tt) -> tt U21(tt, V1) -> U22(isNat(V1)) U22(tt) -> tt U31(tt, V1, V2) -> U32(isNat(V1), V2) U32(tt, V2) -> U33(isNat(V2)) U33(tt) -> tt U41(tt, N) -> N U51(tt, M, N) -> s(plus(N, M)) U61(tt) -> 0 U71(tt, M, N) -> plus(x(N, M), N) and(tt, X) -> X isNat(0) -> tt isNat(plus(V1, V2)) -> U11(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNat(s(V1)) -> U21(isNatKind(V1), V1) isNat(x(V1, V2)) -> U31(and(isNatKind(V1), isNatKind(V2)), V1, V2) isNatKind(0) -> tt isNatKind(plus(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) isNatKind(s(V1)) -> isNatKind(V1) isNatKind(x(V1, V2)) -> and(isNatKind(V1), isNatKind(V2)) plus(N, 0) -> U41(and(isNat(N), isNatKind(N)), N) plus(N, s(M)) -> U51(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) x(N, 0) -> U61(and(isNat(N), isNatKind(N))) x(N, s(M)) -> U71(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N) Q is empty. ---------------------------------------- (28) QCSDependencyGraphProof (EQUIVALENT) The approximation of the Context-Sensitive Dependency Graph [LPAR08] contains 0 SCCs with 1 less node. ---------------------------------------- (29) TRUE