/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR X Y) (STRATEGY CONTEXTSENSITIVE (div 1 2) (gt 1 2) (if 1) (minus 1 2) (p 1) (0) (false) (s 1) (true) ) (RULES div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X ) Problem 1: Innermost Equivalent Processor: -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> The context-sensitive term rewriting system is an orthogonal system. Therefore, innermost cs-termination implies cs-termination. Problem 1: Dependency Pairs Processor: -> Pairs: DIV(s(X),s(Y)) -> DIV(minus(X,Y),s(Y)) DIV(s(X),s(Y)) -> MINUS(X,Y) GT(s(X),s(Y)) -> GT(X,Y) IF(false,X,Y) -> Y IF(true,X,Y) -> X MINUS(X,Y) -> GT(Y,0) MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding Rules: minus(p(X),p(Y)) -> MINUS(p(X),p(Y)) minus(p(X),p(Y)) -> P(X) minus(p(X),p(Y)) -> P(Y) Problem 1: SCC Processor: -> Pairs: DIV(s(X),s(Y)) -> DIV(minus(X,Y),s(Y)) DIV(s(X),s(Y)) -> MINUS(X,Y) GT(s(X),s(Y)) -> GT(X,Y) IF(false,X,Y) -> Y IF(true,X,Y) -> X MINUS(X,Y) -> GT(Y,0) MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: minus(p(X),p(Y)) -> MINUS(p(X),p(Y)) minus(p(X),p(Y)) -> P(X) minus(p(X),p(Y)) -> P(Y) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: IF(false,X,Y) -> Y IF(true,X,Y) -> X MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) ->->-> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X ->->-> Unhiding rules: minus(p(X),p(Y)) -> MINUS(p(X),p(Y)) ->->Cycle: ->->-> Pairs: GT(s(X),s(Y)) -> GT(X,Y) ->->-> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X ->->-> Unhiding rules: Empty ->->Cycle: ->->-> Pairs: DIV(s(X),s(Y)) -> DIV(minus(X,Y),s(Y)) ->->-> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X ->->-> Unhiding rules: Empty The problem is decomposed in 3 subproblems. Problem 1.1: Reduction Pairs Processor: -> Pairs: IF(false,X,Y) -> Y IF(true,X,Y) -> X MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: minus(p(X),p(Y)) -> MINUS(p(X),p(Y)) -> Usable rules: gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) p(0) -> 0 p(s(X)) -> X ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [gt](X1,X2) = X1 [minus](X1,X2) = 2.X1 + 2.X2 + 2 [p](X) = 1/2.X [0] = 0 [false] = 0 [s](X) = 2.X + 1 [true] = 1/2 [IF](X1,X2,X3) = X1 + X2 + X3 [MINUS](X1,X2) = 2.X1 + 2.X2 + 2 Problem 1.1: SCC Processor: -> Pairs: IF(false,X,Y) -> Y MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: minus(p(X),p(Y)) -> MINUS(p(X),p(Y)) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: IF(false,X,Y) -> Y MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) ->->-> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X ->->-> Unhiding rules: minus(p(X),p(Y)) -> MINUS(p(X),p(Y)) Problem 1.1: SubNColl Processor: -> Pairs: IF(false,X,Y) -> Y MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: minus(p(X),p(Y)) -> MINUS(p(X),p(Y)) ->Projection: pi(IF) = 3 pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: IF(false,X,Y) -> Y MINUS(X,Y) -> IF(gt(Y,0),minus(p(X),p(Y)),X) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: Empty ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: SubNColl Processor: -> Pairs: GT(s(X),s(Y)) -> GT(X,Y) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: Empty ->Projection: pi(GT) = 1 Problem 1.2: Basic Processor: -> Pairs: Empty -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: Empty -> Result: Set P is empty The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: DIV(s(X),s(Y)) -> DIV(minus(X,Y),s(Y)) -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: Empty -> Usable rules: gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 2 ->Interpretation: [gt](X1,X2) = 2.X1 + 1/2.X2 [if](X1,X2,X3) = X2 + X3 [minus](X1,X2) = 2.X1 + 1/2 [p](X) = 1/2.X [0] = 0 [false] = 0 [s](X) = 2.X + 1 [true] = 0 [DIV](X1,X2) = X1 Problem 1.3: Basic Processor: -> Pairs: Empty -> Rules: div(0,s(Y)) -> 0 div(s(X),s(Y)) -> s(div(minus(X,Y),s(Y))) gt(0,Y) -> false gt(s(X),0) -> true gt(s(X),s(Y)) -> gt(X,Y) if(false,X,Y) -> Y if(true,X,Y) -> X minus(X,Y) -> if(gt(Y,0),minus(p(X),p(Y)),X) p(0) -> 0 p(s(X)) -> X -> Unhiding rules: Empty -> Result: Set P is empty The problem is finite.